Celso Valentim Santilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6394416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relevance of sol–gel transition and spinodal decomposition for hierarchical porosity structure of monolithic alumina. Journal of Sol-Gel Science and Technology, 2022, 102, 6-17.	2.4	4
2	Nanostructured Poly(methyl Methacrylate)–Silica Coatings for Corrosion Protection of Reinforcing Steel. ACS Applied Nano Materials, 2022, 5, 2603-2615.	5.0	9
3	Fingerprint of semi-crystalline structure memory in the thermal and ionic conduction properties of amorphous ureasil–polyether hybrid solid electrolytes. RSC Advances, 2022, 12, 5225-5235.	3.6	1
4	MgAl-Layered Double Hydroxide Nanoparticles as Smart Nanofillers To Control the Rheological Properties and the Residual Porosity of Cement-Based Materials. ACS Applied Nano Materials, 2022, 5, 7896-7907.	5.0	6
5	Green-High-Performance PMMA–Silica–Li Barrier Coatings. Corrosion and Materials Degradation, 2022, 3, 303-319.	2.4	3
6	Sol-gel synthesis of nanocrystalline MgO and its application as support in Ni/MgO catalysts for ethanol steam reforming. Applied Surface Science, 2021, 542, 148744.	6.1	21
7	Protective PMMA-silica coatings for aluminum alloys: Nanostructural control of elevated thermal stability and anticorrosive performance. Progress in Organic Coatings, 2021, 152, 106129.	3.9	14
8	Insights into the Preparation of Copper Catalysts Supported on Layered Double Hydroxide Derived Mixed Oxides for Ethanol Dehydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 26001-26012.	8.0	19
9	Fenton-like degradation of sulfathiazole using copper-modified MgFe-CO3 layered double hydroxide. Journal of Hazardous Materials, 2021, 413, 125388.	12.4	38
10	Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir, 2021, 37, 13379-13389.	3.5	88
11	Smart PMMA‑cerium oxide anticorrosive coatings: Effect of ceria content on structure and electrochemical properties. Progress in Organic Coatings, 2021, 161, 106548.	3.9	5
12	Preparation of hydrophobic MFI zeolites containing hierarchical micro-mesopores using seeds functionalized with octyltriethoxysilane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124109.	4.7	12
13	Barrier properties of high performance PMMA-silica anticorrosion coatings. Progress in Organic Coatings, 2020, 138, 105398.	3.9	31
14	Conjugation of superparamagnetic iron oxide nanoparticles and curcumin photosensitizer to assist in photodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111297.	5.0	17
15	Quick-EXAFS and Raman monitoring of activation, reaction and deactivation of NiCu catalysts obtained from hydrotalcite-like precursors. Physical Chemistry Chemical Physics, 2020, 22, 18835-18848.	2.8	8
16	Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Materials Science and Engineering C, 2020, 116, 111149.	7.3	39
17	PMMA-silica nanocomposite coating: Effective corrosion protection and biocompatibility for a Ti6Al4V alloy. Materials Science and Engineering C, 2020, 110, 110713.	7.3	24
18	Dual Role of Lithium on the Structure and Self-Healing Ability of PMMA-Silica Coatings on AA7075 Alloy. ACS Applied Materials & Interfaces, 2019, 11, 40629-40641.	8.0	27

#	Article	IF	CITATIONS
19	Sulfated tin oxide with macro- and mesopores controlled using an integrated sol-gel and surfactant template route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 124012.	4.7	4
20	Ethanol dehydrogenative reactions catalyzed by copper supported on porous Al–Mg mixed oxides. RSC Advances, 2019, 9, 3294-3302.	3.6	10
21	Accelerated ultraviolet aging of structural and luminescent properties of the ureasil-polyether hybrid materials U-PEO:Eu3+ and U-PPO:Eu3+. Polymer, 2019, 177, 102-110.	3.8	1
22	Operando monitoring of metal sites and coke evolution during non-oxidative and oxidative ethanol steam reforming over Ni and NiCu ex-hydrotalcite catalysts. Catalysis Today, 2019, 336, 122-130.	4.4	27
23	Catalytic performance of texturally improved Al–Mg mixed oxides derived from emulsion-synthesized hydrotalcites. RSC Advances, 2018, 8, 6039-6046.	3.6	3
24	Surfactant-assisted synthesis of Mo–V mixed oxide catalysts for upgraded one-step conversion of glycerol to acrylic acid. RSC Advances, 2018, 8, 11975-11982.	3.6	14
25	Structure and properties of epoxy-siloxane-silica nanocomposite coatings for corrosion protection. Journal of Colloid and Interface Science, 2018, 513, 617-628.	9.4	51
26	Studies on dispersion and reactivity of vanadium oxides deposited on lamellar ferrierite zeolites for condensation of glycerol into bulky products. Molecular Catalysis, 2018, 458, 161-170.	2.0	25
27	Thermal stability of PMMA–LDH nanocomposites: decoupling the physical barrier, radical trapping, and charring contributions using XAS/WAXS/Raman time-resolved experiments. RSC Advances, 2018, 8, 34670-34681.	3.6	9
28	<i>Operando</i> XAS/Raman/MS monitoring of ethanol steam reforming reaction–regeneration cycles. Catalysis Science and Technology, 2018, 8, 6297-6301.	4.1	17
29	Coupling Photoluminescence and Ionic Conduction Properties Using the Different Coordination Sites of Ureasil–Polyether Hybrid Materials. ACS Applied Materials & Interfaces, 2018, 10, 37364-37373.	8.0	14
30	The Critical Role of Thioacetamide Concentration in the Formation of ZnO/ZnS Heterostructures by Sol-Gel Process. Nanomaterials, 2018, 8, 55.	4.1	10
31	Highly Controlled Diffusion Drug Release from Ureasil–Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 & Interfaces, 2018, 10, 19059-19068.	Tf 50 267 8.0	Td (oxide)â€ 37
32	Adsorption of Acid Yellow 42 dye on calcined layered double hydroxide: Effect of time, concentration, pH and temperature. Applied Clay Science, 2017, 140, 132-139.	5.2	113
33	Thermal decomposition and recovery properties of ZnAl–CO ₃ layered double hydroxide for anionic dye adsorption: insight into the aggregative nucleation and growth mechanism of the LDH memory effect Journal of Materials Chemistry A, 2017, 5, 9998-10009.	10.3	104
34	Hydrothermal synthesis of Mo-V mixed oxides possessing several crystalline phases and their performance in the catalytic oxydehydration of glycerol to acrylic acid. Catalysis Today, 2017, 296, 10-18.	4.4	24
35	Correlation of Sol–Gel Alumina‧upported Cobalt Catalyst Processing to Cobalt Speciation, Ethanol Steam Reforming Activity, and Stability. ChemCatChem, 2017, 9, 3918-3929.	3.7	21
36	Thermal treatments of precursors of molybdenum and vanadium oxides and the formed Mo x V y O z phases active in the oxydehydration of glycerol. Applied Catalysis A: General, 2017, 532, 1-11.	4.3	27

CELSO VALENTIM SANTILLI

#	Article	IF	CITATIONS
37	Preparation and characterization of a red luminescent composite composed of an EVA copolymer and a Y ₃ BO ₆ :Eu ³⁺ phosphor. New Journal of Chemistry, 2017, 41, 12006-12013.	2.8	17

Thermal properties, nanoscopic structure and swelling behavior of chitosan/(ureasilâ \in polyethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 38

39	Emulsion-mediated synthesis of hierarchical mesoporous-macroporous Al-Mg hydrotalcites. Microporous and Mesoporous Materials, 2017, 240, 149-158.	4.4	8
40	The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites. Catalysis Today, 2017, 289, 20-28.	4.4	35
41	Loaded Ce-Ag organic-inorganic hybrids and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2016, 147, 151-160.	5.0	6
42	High surface area hierarchical porous Al ₂ O ₃ prepared by the integration of sol–gel transition and phase separation. RSC Advances, 2016, 6, 57217-57226.	3.6	18
43	Magnetic hyperthermia-induced drug release from ureasil-PEO-γ-Fe ₂ O ₃ nanocomposites. RSC Advances, 2016, 6, 63291-63295.	3.6	17
44	Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration. Journal of Molecular Catalysis A, 2016, 422, 148-157.	4.8	48
45	Time-resolved XAS/MS/Raman monitoring of mutual copper self-reduction and ethanol dehydrogenation reactions. RSC Advances, 2016, 6, 20453-20457.	3.6	28
46	Sulfated zirconia foams synthesized by integrative route combining surfactants, air bubbles and sol–gel transition applied to heterogeneous catalysis. RSC Advances, 2016, 6, 6686-6694.	3.6	14
47	Correlation between Structural and Catalytic Properties of Copper Supported on Porous Alumina for the Ethanol Dehydrogenation Reaction. ChemCatChem, 2015, 7, 1668-1677.	3.7	46
48	Siloxane–PMMA hybrid anti-corrosion coatings reinforced by lignin. Surface and Coatings Technology, 2015, 275, 9-16.	4.8	49
49	On the structure of high performance anticorrosive PMMA–siloxane–silica hybrid coatings. RSC Advances, 2015, 5, 106754-106763.	3.6	68
50	One-step glycerol oxidehydration to acrylic acid on multifunctional zeolite catalysts. Applied Catalysis A: General, 2015, 492, 243-251.	4.3	66
51	Clycerol dehydration catalyzed by MWW zeolites and the changes in the catalyst deactivation caused by porosity modification. Applied Catalysis A: General, 2015, 495, 84-91.	4.3	52
52	Effect of the balance between Co(II) and Co(0) oxidation states on the catalytic activity of cobalt catalysts for Ethanol Steam Reforming. Catalysis Today, 2014, 229, 88-94.	4.4	50
53	Structure and catalytic properties of sulfated zirconia foams. Journal of Sol-Gel Science and Technology, 2014, 72, 252-259.	2.4	6
54	Structure and thermal behavior of PMMA–polysilsesquioxane organic–inorganic hybrids. Polymer Degradation and Stability, 2014, 104, 112-119.	5.8	22

#	Article	IF	CITATIONS
55	Ureasil–polyether hybrid blend with tuneable hydrophilic/hydrophobic features based on U-PEO1900 and U-PPO400 mixtures. Journal of Sol-Gel Science and Technology, 2014, 70, 317-328.	2.4	28
56	Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray Absorption Spectroscopy monitoring of the activation of copper alumina catalyst. Catalysis Today, 2014, 229, 114-122.	4.4	108
57	Investigations on PVP/Y ₃ BO ₆ :Eu ³⁺ , a red luminescent composite for lighting devices based on near UV-LEDs. Journal of Materials Chemistry C, 2014, 2, 6301-6311.	5.5	15
58	Fine-tuning of a nanostructure, swelling, and drug delivery profile by blending ureasil–PEO and ureasil–PPO hybrids. Polymer Chemistry, 2014, 5, 1897-1904.	3.9	20
59	Chitosan/(ureasil–PEO hybrid) blend for drug delivery. Journal of Sol-Gel Science and Technology, 2014, 72, 233-238.	2.4	19
60	Textured macro- and mesoporous alumina samples designed in the presence of different surfactant types. Journal of Sol-Gel Science and Technology, 2014, 71, 9-15.	2.4	6
61	Polymer–clay nanocomposites thermal stability: experimental evidence of the radical trapping effect. RSC Advances, 2013, 3, 22830.	3.6	32
62	Design of microstructure of zirconia foams from the emulsion template properties. Soft Matter, 2013, 9, 550-558.	2.7	23
63	Liquid Foam Templates Associated with the Sol-Gel Process for Production of Zirconia Ceramic Foams. Materials, 2013, 6, 1967-1979.	2.9	15
64	A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites. Journal of Catalysis, 2013, 300, 102-112.	6.2	131
65	Synthesis of PTSH-modified CeO2 nanoparticles: Effect of the modifier on structure, optical properties, and dispersibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 426, 63-69.	4.7	6
66	Ureasil–polyether hybrid film-forming materials. Colloids and Surfaces B: Biointerfaces, 2013, 101, 156-161.	5.0	24
67	XAS/WAXS Time-Resolved Phase Speciation of Chlorine LDH Thermal Transformation: Emerging Roles of Isovalent Metal Substitution. Chemistry of Materials, 2013, 25, 2855-2867.	6.7	52
68	Design of hierarchical porous aluminas by using one-pot synthesis and different calcination temperatures. Journal of Sol-Gel Science and Technology, 2012, 63, 242-250.	2.4	13
69	Highly corrosion resistant siloxane-polymethyl methacrylate hybrid coatings. Journal of Sol-Gel Science and Technology, 2012, 63, 266-274.	2.4	57
70	Liquid crystalline formulations containing modified surface TiO2 nanoparticles obtained by sol–gel process. Journal of Sol-Gel Science and Technology, 2012, 63, 251-257.	2.4	11
71	Formation of TiO2 ceramic foams from the integration of the sol–gel method with surfactants assembly and emulsion. Journal of Sol-Gel Science and Technology, 2012, 63, 224-229.	2.4	10
72	Wettability and photodegradation activity of sol–gel dip-coated zinc oxide films. Journal of Sol-Gel Science and Technology, 2012, 63, 230-234.	2.4	7

CELSO VALENTIM SANTILLI

#	Article	IF	CITATIONS
73	Drug–matrix interaction of sodium diclofenac incorporated into ureasil–poly(ethylene oxide) hybrid materials. RSC Advances, 2012, 2, 5629.	3.6	27
74	Construção de uma câmara para monitoramento in situ do processo de secagem de geis e sólidos porosos. Quimica Nova, 2011, 34, 1455-1458.	0.3	4
75	Efficiency of ethanol conversion induced by controlled modification of pore structure and acidic properties of alumina catalysts. Applied Catalysis A: General, 2011, 398, 59-65.	4.3	28
76	Multi-spectroscopic monitoring of cisplatin-derived species delivery from ureasil polyether hybrid matrix. Phase Transitions, 2011, 84, 687-699.	1.3	6
77	Preparation of hierarchically structured porous aluminas by a dual soft template method. Microporous and Mesoporous Materials, 2010, 132, 268-275.	4.4	36
78	Controlled Drug Release from Ureasilâ^'Polyether Hybrid Materials. Chemistry of Materials, 2009, 21, 463-467.	6.7	56
79	Multi-scale structural description of siloxane–PPO hybrid ionic conductors doped by sodium salts. Journal of Materials Chemistry, 2007, 17, 744-757.	6.7	42
80	Evolution of rheological properties and local structure during gelation of siloxane-polymethylmethacrylate hybrid materials. Journal of Sol-Gel Science and Technology, 2006, 37, 179-184.	2.4	15
81	Nanostructure and luminescent properties of sol-gel derived europium-doped amine functionalised hybrids. Journal of Sol-Gel Science and Technology, 2006, 37, 99-104.	2.4	5
82	Local Structure and Near-Infrared Emission Features of Neodymium-Based Amine Functionalized Organic/Inorganic Hybrids. Journal of Physical Chemistry B, 2005, 109, 20093-20104.	2.6	52
83	Role of the Surface State and Structural Feature in the Thermoreversible Solâ^'Gel Transition of a Zirconyl Aqueous Precursor Modified by Sulfuric Acid. Chemistry of Materials, 2004, 16, 3995-4004.	6.7	28
84	Catalysis and Temperature Dependence on the Formation of ZnO Nanoparticles and of Zinc Acetate Derivatives Prepared by the Solâ^'Gel Route. Journal of Physical Chemistry B, 2003, 107, 568-574.	2.6	176
85	Small-Angle X-ray Scattering Study of Gelation and Aging of Eu3+-Doped Solâ^'Gel-Derived Siloxaneâ^'Poly(oxyethylene) Nanocomposites. Journal of Physical Chemistry B, 2002, 106, 4377-4382.	2.6	19
86	Structural modelling of Eu3+-based siloxane–poly(oxyethylene) nanohybrids. Journal of Materials Chemistry, 2001, 11, 3249-3257.	6.7	50
87	Structure and Luminescence of Eu3+-Doped Class I Siloxaneâ^'Poly(ethylene glycol) Hybrids. Chemistry of Materials, 2001, 13, 2818-2823.	6.7	68
88	Formation of colloidal particles of hydrous iron oxide by forced hydrolysis. Journal of Non-Crystalline Solids, 2000, 273, 41-47.	3.1	22
89	Small-Angle X-ray Scattering Study of Solâ^'Gel-Derived Siloxaneâ^'PEG and Siloxaneâ^'PPG Hybrid Materials. Journal of Physical Chemistry B, 1999, 103, 4937-4942. 	2.6	120
90	Porosity evolution inSnO2xerogels during sintering under isothermal conditions. Physical Review B, 1995, 51, 8801-8809.	3.2	36

#	Article	IF	CITATIONS
91	Organic-Inorganic Hybrid Coatings for Corrosion Protection of Metallic Surfaces. , 0, , .		8
92	Rehydration of katoite as a layered double hydroxide: an in situ study. RILEM Technical Letters, 0, 6, 8-16.	0.0	5
93	Ureasil–Polyether–CoFe2O4 Nanocomposites: Coupling a Drug Delivery System and Magnetic Hyperthermia. ACS Applied Polymer Materials, 0, , .	4.4	3