
Rino Morent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules, 2009, 10, 2351-2378.	5.4	599
2	Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 2011, 195, 30-54.	12.4	560
3	Non-thermal plasma treatment of textiles. Surface and Coatings Technology, 2008, 202, 3427-3449.	4.8	501
4	Plasma Surface Modification of Biodegradable Polymers: A Review. Plasma Processes and Polymers, 2011, 8, 171-190.	3.0	340
5	Comparison between XPS―and FTIRâ€analysis of plasmaâ€ŧreated polypropylene film surfaces. Surface and Interface Analysis, 2008, 40, 597-600.	1.8	254
6	Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface and Coatings Technology, 2007, 201, 7066-7075.	4.8	241
7	Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction. Plasma Chemistry and Plasma Processing, 2012, 32, 1039-1073.	2.4	206
8	Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Applied Catalysis B: Environmental, 2018, 223, 154-166.	20.2	196
9	Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface and Coatings Technology, 2007, 201, 7847-7854.	4.8	164
10	Engineering a Highly Defective Stable UiO-66 with Tunable Lewis- BrÃ,nsted Acidity: The Role of the Hemilabile Linker. Journal of the American Chemical Society, 2020, 142, 3174-3183.	13.7	156
11	Applications of Plasma-Liquid Systems: A Review. Materials, 2019, 12, 2751.	2.9	124
12	Surface characterization of plasmaâ€modified polyethylene by contact angle experiments and ATRâ€FTIR spectroscopy. Surface and Interface Analysis, 2008, 40, 608-611.	1.8	116
13	Organic–inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure. Surface and Coatings Technology, 2009, 203, 1366-1372.	4.8	112
14	Abatement of VOCs with Alternate Adsorption and Plasma-Assisted Regeneration: A Review. Catalysts, 2015, 5, 718-746.	3.5	109
15	Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surface and Coatings Technology, 2006, 201, 2460-2466.	4.8	107
16	Adhesion enhancement by a dielectric barrier discharge of PDMS used for flexible and stretchable electronics. Journal Physics D: Applied Physics, 2007, 40, 7392-7401.	2.8	106
17	Plasma modification of polylactic acid in a medium pressure DBD. Surface and Coatings Technology, 2010, 204, 3272-3279.	4.8	100
18	Nonthermal Plasma Sterilization of Living and Nonliving Surfaces. Annual Review of Biomedical Engineering, 2012, 14, 255-274.	12.3	100

#	Article	IF	CITATIONS
19	The Use of Zeolites for VOCs Abatement by Combining Non-Thermal Plasma, Adsorption, and/or Catalysis: A Review. Catalysts, 2019, 9, 98.	3.5	99
20	DBD treatment of polyethylene terephthalate: Atmospheric versus medium pressure treatment. Surface and Coatings Technology, 2008, 202, 3000-3010.	4.8	92
21	Plasma surface modification of polylactic acid to promote interaction with fibroblasts. Journal of Materials Science: Materials in Medicine, 2013, 24, 469-478.	3.6	89
22	Abatement of VOCs Using Packed Bed Non-Thermal Plasma Reactors: A Review. Catalysts, 2017, 7, 113.	3.5	89
23	Deposition of HMDSO-based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge. Progress in Organic Coatings, 2009, 64, 304-310.	3.9	83
24	Influence of ambient conditions on the ageing behaviour of plasma-treated PET surfaces. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3086-3090.	1.4	81
25	TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Applied Catalysis B: Environmental, 2014, 156-157, 94-100.	20.2	81
26	Post plasma-catalysis for total oxidation of trichloroethylene over Ce–Mn based oxides synthesized by a modified "redox-precipitation route― Applied Catalysis B: Environmental, 2015, 172-173, 65-72.	20.2	80
27	Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Scientific Reports, 2015, 5, 10138.	3.3	80
28	Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. Nanomaterials, 2020, 10, 119.	4.1	77
29	Penetration of a dielectric barrier discharge plasma into textile structures at medium pressure. Plasma Sources Science and Technology, 2006, 15, 78-84.	3.1	76
30	Surface modification of polyethylene in an argon atmospheric pressure plasma jet. Surface and Coatings Technology, 2015, 276, 384-390.	4.8	76
31	Influence of Discharge Atmosphere on the Ageing Behaviour of Plasma-Treated Polylactic Acid. Plasma Chemistry and Plasma Processing, 2010, 30, 525-536.	2.4	73
32	Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure. EPJ Applied Physics, 2008, 43, 289-294.	0.7	72
33	Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Applied Surface Science, 2011, 257, 8737-8741.	6.1	70
34	A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. Science of the Total Environment, 2022, 828, 154290.	8.0	70
35	Increasing the Hydrophobicity of a PP Film Using a Helium/CF4 DBD Treatment at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 2008, 28, 289-298.	2.4	69
36	Surface modification of PTFE using an atmospheric pressure plasma jet in argon and argon+CO2. Surface and Coatings Technology, 2012, 206, 2226-2232.	4.8	68

#	Article	IF	CITATIONS
37	Plasmaâ€Polymerization of HMDSO Using an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Processes and Polymers, 2009, 6, S537.	3.0	67
38	Acrylic acid plasma polymerization for biomedical use. Applied Surface Science, 2018, 448, 168-185.	6.1	67
39	Non-thermal plasma technology for the development of antimicrobial surfaces: a review. Journal Physics D: Applied Physics, 2016, 49, 204002.	2.8	65
40	Chemical and physical analysis of cotton fabrics plasma-treated with a low pressure DC glow discharge. Cellulose, 2010, 17, 417-426.	4.9	64
41	Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352, 126-135.	4.7	61
42	Plasma treatment of polycaprolactone at medium pressure. Surface and Coatings Technology, 2011, 205, S543-S547.	4.8	57
43	Simulation and optimization of the post plasma-catalytic system for toluene degradation by a hybrid ANN and NSGA-II method. Applied Catalysis B: Environmental, 2019, 244, 107-119.	20.2	57
44	Effects of operating parameters on plasma-induced PET surface treatment. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3081-3085.	1.4	55
45	Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces. Surface and Coatings Technology, 2014, 258, 359-367.	4.8	55
46	Effects of different sterilization methods on the physico-chemical and bioresponsive properties of plasma-treated polycaprolactone films. Biomedical Materials (Bristol), 2017, 12, 015017.	3.3	55
47	Deposition of polymethyl methacrylate on polypropylene substrates using an atmospheric pressure dielectric barrier discharge. Progress in Organic Coatings, 2009, 64, 230-237.	3.9	54
48	Plasma-catalysis of low TCE concentration in air using LaMnO3+δas catalyst. Applied Catalysis B: Environmental, 2014, 147, 904-911.	20.2	54
49	Multi-pin-to-plate atmospheric glow discharge for the removal of volatile organic compounds in waste air. Plasma Sources Science and Technology, 2003, 12, 412-416.	3.1	50
50	Engineering of Composite Organosilicon Thin Films with Embedded Silver Nanoparticles via Atmospheric Pressure Plasma Process for Antibacterial Activity. Plasma Processes and Polymers, 2014, 11, 921-930.	3.0	48
51	Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate. Applied Surface Science, 2015, 328, 269-278.	6.1	48
52	Deposition of Polyacrylic Acid Films by Means of an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Chemistry and Plasma Processing, 2009, 29, 103-117.	2.4	46
53	Antibacterial activity of nano-silver non-woven fabric prepared by atmospheric pressure plasma deposition. Materials Letters, 2015, 149, 95-99.	2.6	46
54	Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 2018, 157, 19-31.	3.8	46

#	Article	IF	CITATIONS
55	Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Applied Surface Science, 2019, 485, 204-221.	6.1	46
56	The use of DBD plasma treatment and polymerization for the enhancement of biomedical UHMWPE. Thin Solid Films, 2014, 572, 251-259.	1.8	45
57	Atmospheric-pressure plasma assisted engineering of polymer surfaces: From high hydrophobicity to superhydrophilicity. Applied Surface Science, 2021, 535, 147032.	6.1	45
58	Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 2016, 283, 668-675.	12.7	44
59	Acrylic Acid Plasma Coated 3D Scaffolds for Cartilage tissue engineering applications. Scientific Reports, 2018, 8, 3830.	3.3	44
60	Influence of operating parameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectric barrier discharge. Progress in Organic Coatings, 2011, 70, 336-341.	3.9	42
61	Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catalysis Today, 2018, 307, 20-28.	4.4	41
62	Surface Treatment of PEOT/PBT (55/45) with a Dielectric Barrier Discharge in Air, Helium, Argon and Nitrogen at Medium Pressure. Materials, 2018, 11, 391.	2.9	41
63	Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers. Scientific Reports, 2018, 8, 2241.	3.3	40
64	The Design of MnOx Based Catalyst in Post-Plasma Catalysis Configuration for Toluene Abatement. Catalysts, 2018, 8, 91.	3.5	40
65	Dye wastewater degradation by the synergetic effect of an atmospheric pressure plasma treatment and the photocatalytic activity of plasma-functionalized Cu‒TiO2 nanoparticles. Journal of Hazardous Materials, 2021, 405, 124264.	12.4	40
66	Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure. Applied Surface Science, 2010, 257, 372-380.	6.1	39
67	Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. Journal of Hazardous Materials, 2016, 314, 88-94.	12.4	39
68	Atmospheric Pressure Plasma Penetration inside Flexible Polymeric Tubes. Plasma Processes and Polymers, 2015, 12, 271-284.	3.0	38
69	Plasma Functionalization of Polycaprolactone Nanofibers Changes Protein Interactions with Cells, Resulting in Increased Cell Viability. ACS Applied Materials & Interfaces, 2018, 10, 41962-41977.	8.0	37
70	Improving the surface properties of an UHMWPE shoulder implant with an atmospheric pressure plasma jet. Scientific Reports, 2018, 8, 4720.	3.3	36
71	Incorporation of amine moieties onto ultra-high molecular weight polyethylene (UHMWPE) surface via plasma and UV polymerization of allylamine. Surface and Coatings Technology, 2015, 271, 39-47.	4.8	35
72	Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralisation. RSC Advances, 2018, 8, 39106-39114.	3.6	35

#	Article	IF	CITATIONS
73	Physicochemical surface analysis and germination at different irrigation conditions of DBD plasmaâ€treated wheat seeds. Plasma Processes and Polymers, 2021, 18, .	3.0	35
74	Plasma modification of PET foils with different crystallinity. Surface and Coatings Technology, 2011, 205, S511-S515.	4.8	34
75	Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Applied Surface Science, 2019, 479, 942-952.	6.1	33
76	Influence of Water Vapor Addition on the Surface Modification of Polyethylene in an Argon Dielectric Barrier Discharge. Plasma Processes and Polymers, 2014, 11, 117-125.	3.0	32
77	An in-Depth Investigation of Toluene Decomposition with a Glass Beads-Packed Bed Dielectric Barrier Discharge Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 10215-10226.	3.7	32
78	Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air. Journal of Hazardous Materials, 2019, 379, 120781.	12.4	32
79	Improved cell adhesion to flat and porous plasma-treated poly-ε-caprolactone samples. Surface and Coatings Technology, 2013, 232, 447-455.	4.8	31
80	A stability study of plasma polymerized acrylic acid films. Applied Surface Science, 2018, 432, 214-223.	6.1	31
81	Future antiviral polymers by plasma processing. Progress in Polymer Science, 2021, 118, 101410.	24.7	31
82	Local Analysis of Pet Surface Functionalization by an Atmospheric Pressure Plasma Jet. Plasma Processes and Polymers, 2015, 12, 466-476.	3.0	30
83	Comparative Study of the Surface Properties and Cytocompatibility of Plasma-Treated Poly- <i>ε</i> -Caprolactone Nanofibers Subjected to Different Sterilization Methods. Journal of Biomedical Nanotechnology, 2017, 13, 699-716.	1.1	30
84	Measuring the wicking behavior of textiles by the combination of a horizontal wicking experiment and image processing. Review of Scientific Instruments, 2006, 77, 093502.	1.3	29
85	Surface Analysis of Titanium Cleaning and Activation Processes: Non-thermal Plasma Versus Other Techniques. Plasma Chemistry and Plasma Processing, 2014, 34, 917-932.	2.4	29
86	Plasma-controlled surface wettability: recent advances and future applications. International Materials Reviews, 2023, 68, 82-119.	19.3	29
87	Influence of DBD Inlet Geometry on the Homogeneity of Plasmaâ€Polymerized Acrylic Acid Films: The Use of a Microplasma–Electrode Inlet Configuration. Plasma Processes and Polymers, 2015, 12, 1153-1163.	3.0	28
88	A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Applied Surface Science, 2019, 481, 1554-1565.	6.1	28
89	Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: A review. Surfaces and Interfaces, 2022, 31, 102087.	3.0	28
90	Ozone Generation in Air by a DC-Excited Multi-Pin-to-Plane Plasma Source. Ozone: Science and Engineering, 2005, 27, 239-245.	2.5	27

#	Article	IF	CITATIONS
91	Influence of ethanol vapor addition on the surface modification of polyethylene in a dielectric barrier discharge. Applied Surface Science, 2017, 419, 847-859.	6.1	27
92	Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study. Surface and Coatings Technology, 2020, 399, 126203.	4.8	27
93	Fabrication of Microporous Coatings on Titanium Implants with Improved Mechanical, Antibacterial, and Cell-Interactive Properties. ACS Applied Materials & amp; Interfaces, 2020, 12, 30155-30169.	8.0	27
94	Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion. Thin Solid Films, 2015, 596, 256-263.	1.8	26
95	Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers, 2018, 201, 402-415.	10.2	26
96	Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. Carbohydrate Polymers, 2021, 253, 117211.	10.2	26
97	Mn-Based Catalysts for Post Non-Thermal Plasma Catalytic Abatement of VOCs: A Review on Experiments, Simulations and Modeling. Plasma Chemistry and Plasma Processing, 2021, 41, 1239-1278.	2.4	25
98	Deposition of a TMDSO-Based Film by a Non-Equilibrium Atmospheric Pressure DC Plasma Jet. Plasma Processes and Polymers, 2013, 10, 641-648.	3.0	24
99	Dielectric barrier discharge plasma treatment of ultrahigh molecular weight polyethylene in different discharge atmospheres at medium pressure: A cell-biomaterial interface study. Biointerphases, 2015, 10, 029502.	1.6	24
100	Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization. Surface and Coatings Technology, 2016, 294, 201-209.	4.8	24
101	Atmospheric Pressure Plasma Jet Treatment of Poly-Îμ-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 2017, 9, 33080-33090.	8.0	24
102	Investigation of Ag/a-C:H Nanocomposite Coatings on Titanium for Orthopedic Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 23655-23666.	8.0	24
103	Comparative study between in-plasma and post-plasma chemical processes occurring at the surface of UHMWPE subjected to medium pressure Ar and N2 plasma activation. Polymer, 2020, 193, 122383.	3.8	24
104	Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment. Applied Surface Science, 2018, 439, 991-998.	6.1	23
105	Post Plasma Catalysis for the Removal of Acetaldehyde Using Mn–Co/HZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 14719-14728.	3.7	23
106	Plasma parameters effects on the properties, aging and stability behaviors of allylamine plasma coated ultra-high molecular weight polyethylene (UHMWPE) films. Applied Surface Science, 2017, 409, 381-395.	6.1	22
107	Comparative study of different nitrogen-containing plasma modifications applied on 3D porous PCL scaffolds and 2D PCL films. Applied Surface Science, 2020, 516, 146067.	6.1	22
108	X- and Q-band Electron Paramagnetic Resonance of CO2â^'in Hydroxyapatite Single Crystals. Radiation Research, 2000, 154, 467-472.	1.5	21

#	Article	IF	CITATIONS
109	A combined ToF-SIMS and XPS study for the elucidation of the role of water in the performances of a Post-Plasma Process using LaMnO 3+1´as catalyst in the total oxidation of trichloroethylene. Applied Surface Science, 2014, 320, 154-160.	6.1	21
110	Acrylic acid plasma coatings for enhanced cell migration in PCL 3D additive manufactured scaffolds. Surface and Coatings Technology, 2018, 350, 925-935.	4.8	21
111	Remote Atmospheric Pressure DC Glow Discharge Treatment for Adhesion Improvement of PDMS. Plasma Processes and Polymers, 2009, 6, S406.	3.0	19
112	Effect of electrode geometry on the uniformity of plasma-polymerized methyl methacrylate coatings. Progress in Organic Coatings, 2011, 70, 293-299.	3.9	19
113	Determination of the Electron Temperature of Atmospheric Pressure Argon Plasmas by Absolute Line Intensities and a Collisional Radiative Model. Plasma Processes and Polymers, 2014, 11, 777-786.	3.0	19
114	Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. EPJ Applied Physics, 2016, 75, 24710.	0.7	19
115	Titanium surface functionalization with coatings of chitosan and polyphenol-rich plant extracts. Materials Letters, 2017, 196, 213-216.	2.6	19
116	Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (Îμ-caprolactone) Nanofiber Meshes. Nanomaterials, 2019, 9, 1215.	4.1	19
117	Water-Stable Plasma-Polymerized <i>N</i> , <i>N</i> -Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Interfaces, 2020, 12, 2116-2128.	8.0	19
118	Biological activity and antimicrobial property of Cu/a-C:H nanocomposites and nanolayered coatings on titanium substrates. Materials Science and Engineering C, 2021, 119, 111513.	7.3	19
119	Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800309.	4.1	18
120	Process optimization of plasma-catalytic formaldehyde removal using MnOx–Fe2O3 catalysts by response surface methodology. Journal of Environmental Chemical Engineering, 2021, 9, 105773.	6.7	18
121	Qualitative By-Product Identification of Plasma-Assisted TCE Abatement by Mass Spectrometry and Fourier-Transform Infrared Spectroscopy. Plasma Chemistry and Plasma Processing, 2011, 31, 707-718.	2.4	17
122	Modeling and Experimental Study of Trichloroethylene Abatement with a Negative Direct Current Corona Discharge. Plasma Chemistry and Plasma Processing, 2015, 35, 217-230.	2.4	17
123	Germ-free sea bass Dicentrarchus labrax larval model: a valuable tool in the study of host-microbe interactions. Diseases of Aquatic Organisms, 2016, 117, 177-185.	1.0	17
124	Plasma polymerization of cyclopropylamine with a sub-atmospheric pressure DBD. European Polymer Journal, 2018, 103, 1-10.	5.4	17
125	Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Applied Materials & Interfaces, 2019, 11, 31356-31366.	8.0	17
126	Atmospheric Pressure Microwave Plasma Jet for Organic Thin Film Deposition. Polymers, 2020, 12, 354.	4.5	17

#	Article	IF	CITATIONS
127	Atmospheric pressure non-thermal plasma assisted polymerization of poly (ethylene glycol) methylether methacrylate (PEGMA) on low density polyethylene (LDPE) films for enhancement of biocompatibility. Surface and Coatings Technology, 2017, 329, 55-67.	4.8	16
128	Improvement of PET surface modification using an atmospheric pressure plasma jet with different shielding gases. Polymer, 2021, 215, 123421.	3.8	16
129	Regeneration of Hopcalite used for the adsorption plasma catalytic removal of toluene by non-thermal plasma. Journal of Hazardous Materials, 2021, 402, 123877.	12.4	15
130	Evaluation of cross-linking and degradation processes occurring at polymer surfaces upon plasma activation via size-exclusion chromatography. Polymer Degradation and Stability, 2021, 187, 109543.	5.8	15
131	Effect of He/CF ₄ DBD Operating Parameters on PET Surface Modification. Plasma Processes and Polymers, 2009, 6, S412.	3.0	14
132	Effect of humid air exposure between successive helium plasma treatments on PET foils. Surface and Coatings Technology, 2010, 205, 2256-2261.	4.8	14
133	Enhanced cell–material interactions on mediumâ€pressure plasmaâ€treated polyhydroxybutyrate/polyhydroxyvalerate. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1778-1786.	4.0	14
134	Improvement of the plasma treatment effect on PET with a newly designed atmospheric pressure plasma jet. Plasma Processes and Polymers, 2017, 14, 1600200.	3.0	14
135	Surface modification of polymer films with a remote atmospheric pressure d.c. glow discharge: influence of substrate location. Surface and Interface Analysis, 2010, 42, 1316-1320.	1.8	13
136	Plasma polymerization onto nonwoven polyethylene/polypropylene fibers for laccase immobilization as dye decolorization filter media. Textile Reseach Journal, 2019, 89, 3578-3590.	2.2	13
137	Non-thermal plasma activation of BPDA-PPD polyimide for improved cell-material interaction. Polymer, 2020, 205, 122831.	3.8	12
138	Acrylic acid plasma polymerization and post-plasma ethylene diamine grafting for enhanced bone marrow mesenchymal stem cell behaviour on polycaprolactone nanofibers. Applied Surface Science, 2021, 563, 150363.	6.1	12
139	Pressure Dependence of Helium DBD Plasma Penetration Into Textile Layers. IEEE Transactions on Plasma Science, 2008, 36, 1308-1309.	1.3	11
140	Decomposition of Toluene with Plasma-catalysis: A Review. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	11
141	Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films. Applied Surface Science, 2016, 376, 151-160.	6.1	11
142	Atmospheric pressure plasma activation of PP films with a localized μplasma. Surface and Coatings Technology, 2016, 307, 1074-1083.	4.8	10
143	An atmospheric pressure nonâ€selfâ€sustained glow discharge in between metal/metal andÂmetal/liquid electrodes. Plasma Processes and Polymers, 2020, 17, 1900191.	3.0	10
144	Effect of liquid impregnation on DBD atmospheric pressure plasma treatment of cotton. Cellulose, 2020, 27, 7847-7859.	4.9	10

#	Article	IF	CITATIONS
145	Silanization of Plasma-Activated Hexamethyldisiloxane-Based Plasma Polymers for Substrate-Independent Deposition of Coatings with Controlled Surface Chemistry. ACS Applied Materials & Interfaces, 2022, 14, 4620-4636.	8.0	10
146	Visualization of the Penetration Depth of Plasma in Three-Dimensional Porous PCL Scaffolds. IEEE Transactions on Plasma Science, 2011, 39, 2792-2793.	1.3	9
147	Plasma polymerisation of siloxanes at atmospheric pressure. Surface Engineering, 2011, 27, 627-633.	2.2	9
148	Functionalized, biocompatible, and impermeable nanoscale coatings for PEEK. Materials Science and Engineering C, 2017, 76, 865-870.	7.3	9
149	Effect of processing parameters on the deposition of SiOx-like coatings on the surface of polypropylene films using glow discharge plasma assisted polymerization for tissue engineering applications. Vacuum, 2017, 143, 412-422.	3.5	9
150	Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions. Journal of Physics: Conference Series, 2017, 841, 012018.	0.4	9
151	Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition. Applied Surface Science, 2014, 305, 321-329.	6.1	8
152	Local plasma activation of PS films with a defined design for biomedical use. Surface and Coatings Technology, 2018, 350, 985-996.	4.8	8
153	Investigating the stability of cyclopropylamine-based plasma polymers in water. Applied Surface Science, 2020, 517, 146167.	6.1	8
154	Acid treated Ce modified birnessite–type MnO2 for ozone decomposition at low temperature: Effect of nitrogen containing co-pollutants and water. Applied Surface Science, 2022, 571, 151240.	6.1	8
155	Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling. Plasma Sources Science and Technology, 2008, 17, 015004.	3.1	7
156	Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials. Catalysts, 2020, 10, 761.	3.5	7
157	Composite yarns with antibacterial nanofibrous sheaths produced by collectorless alternatingâ€current electrospinning for suture applications. Journal of Applied Polymer Science, 2022, 139, .	2.6	7
158	Substrate-independent and widely applicable deposition of antibacterial coatings. Trends in Biotechnology, 2023, 41, 63-76.	9.3	7
159	Hybrid Plasma-Catalyst System for the Removal of Trichloroethylene in Air. Journal of Advanced Oxidation Technologies, 2006, 9, .	0.5	6
160	Plasma Modified Textiles for Biomedical Applications. , 0, , .		6
161	Non-thermal plasma assisted lithography for biomedical applications: an overview. International Journal of Nanotechnology, 2016, 13, 695.	0.2	6
162	Non-thermal Plasma Technology for the Improvement of Scaffolds for Tissue Engineering and Regenerative Medicine - A Review. , 0, , .		6

#	Article	IF	CITATIONS
163	Influence of non-thermal TiCl4/Ar + O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility. Materials Science and Engineering C, 2016, 62, 908-918.	7.3	6
164	Properties, ageing behavior and stability of bipolar films containing nano-layers of allylamine and acrylic acid plasma polymers. Applied Surface Science, 2018, 442, 517-524.	6.1	6
165	Plasma Polymerization for Tissue Engineering Purposes. , 0, , .		6
166	Removal mechanism and quantitative control of trichloroethylene in a post-plasma-catalytic system over Mn–Ce/HZSM-5 catalysts. Catalysis Science and Technology, 2021, 11, 3746-3761.	4.1	6
167	Plasma nitrogen fixation in the presence of a liquid interface: role of OH radicals. Reaction Chemistry and Engineering, 2022, 7, 1047-1052.	3.7	6
168	Metal-Free Chemoselective Reduction of Nitroarenes Catalyzed by Covalent Triazine Frameworks: The Role of Embedded Heteroatoms. ACS Applied Materials & Interfaces, 2022, 14, 15287-15297.	8.0	6
169	Effect of non-thermal plasma in the activation and regeneration of 13X zeolite for enhanced VOC elimination by cycled storage and discharge process. Journal of Cleaner Production, 2022, 364, 132687.	9.3	6
170	DC-excited cold atmospheric pressure plasmas. European Physical Journal D, 2006, 56, B896-B902.	0.4	5
171	Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties. Journal of Applied Polymer Science, 2020, 137, 48914.	2.6	5
172	Combinatorial effects of non-thermal plasma oxidation processes and photocatalytic activity on the inactivation of bacteria and degradation of toxic compounds in wastewater. RSC Advances, 2022, 12, 14246-14259.	3.6	5
173	Incorporation of Primary Amines via Plasma Technology on Biomaterials. , 2015, , .		4
174	The plasma footprint of an atmospheric pressure plasma jet on a flat polymer substrate and its relation to surface treatment. EPJ Applied Physics, 2016, 75, 24712.	0.7	4
175	Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone. Frontiers in Chemistry, 2019, 7, 344.	3.6	4
176	N <i>â€</i> Rich Porous Polymer with Isolated Tb ³⁺ â€Ions Displays Unique Temperature Dependent Behavior through the Absence of Thermal Quenching. Chemistry - A European Journal, 2020, 26, 15596-15604.	3.3	4
177	Adsorption Followed by Plasma Assisted Catalytic Conversion of Toluene into CO2 on Hopcalite in an Air Stream. Catalysts, 2021, 11, 845.	3.5	4
178	A polyâ€diagnostic study of the shield gasâ€assisted atmospheric pressure plasma jet propagation upon a dielectric surface. Plasma Processes and Polymers, 2022, 19, .	3.0	4
179	The Effect of Medium Pressure Plasma Treatment on Thin Poly- <i>ϵ</i> -Caprolactone Layers. Journal of Adhesion Science and Technology, 2012, 26, 2239-2249.	2.6	3
180	Pre-electrospinning polymer solution treatment by atmospheric-pressure argon plasma jet. , 2016, , .		3

#	Article	IF	CITATIONS
181	Development of 1-propanethiol-based thiol-rich plasma polymerized coatings using a medium pressure dielectric barrier discharge. Applied Surface Science, 2019, 495, 143484.	6.1	3
182	Comparing medium pressure dielectric barrier discharge (DBD) plasmas and classic methods of surface cleaning/activation of pure Mg for biomedical applications. Surface and Coatings Technology, 2021, 410, 126934.	4.8	3
183	Plasma degradation of trichloroethylene: process optimization and reaction mechanism analysis. Journal Physics D: Applied Physics, 2022, 55, 125202.	2.8	3
184	Plasma surface treatment of biomedical polymers to improve cell adhesion. , 2012, , .		2
185	Plasma Polymerization in a Nitrogen/Ethanol Dielectric Barrier Discharge: A Parameter Study. Plasma Chemistry and Plasma Processing, 2019, 39, 1317-1342.	2.4	2
186	Non-thermal plasma jet-assisted development of phosphorus-containing functional coatings on 3D-printed PCL scaffolds intended for bone tissue engineering. Journal of Physics and Chemistry of Solids, 2021, 154, 110025.	4.0	2
187	Different Techniques Used for Plasma Modification of Polyolefin Surfaces. Engineering Materials, 2022, , 15-56.	0.6	2
188	The Influence of Preâ€Electrospinning Plasma Treatment on Physicochemical Characteristics of PLA Nanofibers. Macromolecular Materials and Engineering, 2019, 304, 1900391.	3.6	1
189	Post-Plasma Catalysis for Trichloroethylene Abatement with Ce-Doped Birnessite Downstream DC Corona Discharge Reactor. Catalysts, 2021, 11, 946.	3.5	1
190	Plasma-Catalytic Removal of VOCs. Springer Series on Atomic, Optical, and Plasma Physics, 2019, , 145-180.	0.2	1
191	Investigating the Nucleation of AlOx and HfOx ALD on Polyimide: Influence of Plasma Activation. Coatings, 2021, 11, 1352.	2.6	1
192	Antimicrobial Ag/a-C:H nanocomposite coated titanium substrates for implant applications. , 2018, , .		1
193	Self-running pulsed–periodical streamer discharge in static argon sustained in a packed-bed reactor under steady-state supplying voltage. Plasma Sources Science and Technology, 2005, 14, 301-307.	3.1	0
194	Plasma Surface Modification of Electrospun Polymeric Scaffolds Intended for Tissue Engineering. , 2017, , .		0
195	Plasma-modified 3D additive manufactured scaffolds for cartilage/bone interfacial tissue engineering. , 2018, , .		0
196	Sequential adsorption plasma catalytic abatement of toluene using metal oxide loaded MS-13X in packed bed DBD reactor. , 2021, , .		0
197	Guest Editorial Special Issue on Plenary, Invited, and Selected Papers From the Second International Conference on Advances in Plasma Science and Technology (ICAPST-21). IEEE Transactions on Plasma Science, 2022, 50, 1380-1381.	1.3	0