Anja Hoffmann-Röder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6392490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lanmodulin peptides $\hat{a} \in$ " unravelling the binding of the EF-Hand loop sequences stripped from the structural corset. Inorganic Chemistry Frontiers, 2022, 9, 4009-4021.	6.0	9
2	Transforming Chemical Proteomics Enrichment into a High-Throughput Method Using an SP2E Workflow. Jacs Au, 2022, 2, 1712-1723.	7.9	4
3	Optical Control of Cytokine Production Using Photoswitchable Galactosylceramides. Chemistry - A European Journal, 2020, 26, 4476-4479.	3.3	29
4	A set of rhamnosylation-specific antibodies enables detection of novel protein glycosylations in bacteria. Organic and Biomolecular Chemistry, 2020, 18, 6823-6828.	2.8	5
5	Folding and Unfolding of the Short Light-Triggered β-Hairpin Peptide AzoChignolin Occurs within 100 ns. Journal of Physical Chemistry B, 2020, 124, 5113-5121.	2.6	3
6	Synthesis of Fluorinated <i>Leishmania</i> Cap Trisaccharides for Diagnostic Tool and Vaccine Development. European Journal of Organic Chemistry, 2018, 2018, 3803-3815.	2.4	18
7	Time-resolved infrared studies of the unfolding of a light triggered Î ² -hairpin peptide. Chemical Physics, 2018, 512, 116-121.	1.9	12
8	Conditional and Reversible Activation of Class A and B G Protein-Coupled Receptors Using Tethered Pharmacology. ACS Central Science, 2018, 4, 166-179.	11.3	27
9	Optical control of a receptor-linked guanylyl cyclase using a photoswitchable peptidic hormone. Chemical Science, 2017, 8, 4644-4653.	7.4	23
10	Structural Basis for EarP-Mediated Arginine Glycosylation of Translation Elongation Factor EF-P. MBio, 2017, 8, .	4.1	24
11	Convenient Access to Di―and TriÂfluoroethylamines for Lead Structure Research. European Journal of Organic Chemistry, 2016, 2016, 930-945.	2.4	6
12	One-Pot Synthesis of Functionalized β-Fluoroalkylated Mannich-Type Products from N-Aryl N,O-Acetals. Synthesis, 2016, 48, 1167-1176.	2.3	2
13	Synthesis of a Fluorinated Sialophorin Hexasaccharide–Threonine Conjugate for Fmoc Solidâ€Phase Glycopeptide Synthesis. European Journal of Organic Chemistry, 2016, 2016, 3709-3720.	2.4	6
14	Front Cover: Synthesis of a Fluorinated Sialophorin Hexasaccharide-Threonine Conjugate for Fmoc Solid-Phase Glycopeptide Synthesis (Eur. J. Org. Chem. 22/2016). European Journal of Organic Chemistry, 2016, 2016, 3657-3657.	2.4	0
15	One-Pot Synthesis of Substituted Trifluoromethylated 2,3-Dihydro-1 <i>H</i> -imidazoles. Organic Letters, 2016, 18, 3474-3477.	4.6	8
16	Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4'-deoxy-4'-fluoro-Thomsen–Friedenreich epitope. Beilstein Journal of Organic Chemistry, 2015, 11, 155-161.	2.2	38
17	Photocontrolled chignolin-derived Î ² -hairpin peptidomimetics. Chemical Communications, 2015, 51, 4001-4004.	4.1	16
18	Optical Control of Insulin Secretion Using an Incretin Switch. Angewandte Chemie - International Edition, 2015, 54, 15565-15569.	13.8	80

2

Anja Hoffmann-Röder

#	Article	IF	CITATIONS
19	Synthesis of functionalized α-trifluoroethyl amine scaffolds via Grignard addition to N-aryl hemiaminal ethers. RSC Advances, 2014, 4, 9288-9291.	3.6	11
20	Designed peptides for biomineral polymorph recognition: a case study for calcium carbonate. Journal of Materials Chemistry B, 2014, 2, 3511-3518.	5.8	14
21	Patterned monomolecular films from polymerizable and fluorinated lipids for the presentation of glycosylated lipids. Colloid and Polymer Science, 2014, 292, 1803-1815.	2.1	2
22	Antibody Recognition of Fluorinated Haptens and Antigens. Current Topics in Medicinal Chemistry, 2014, 14, 840-854.	2.1	17
23	Synthesis of Fluorinated Glycosyl Amino Acid Building Blocks for MUC1 Cancer Vaccine Candidates by Microreactor-Assisted Glycosylation. Journal of Flow Chemistry, 2012, 2, 83-86.	1.9	10
24	Antibody recognition of fluorinated MUC1 glycopeptide antigens. Chemical Communications, 2012, 48, 1487-1489.	4.1	48
25	Perfluoroalkylated amphiphilic MUC1 glycopeptideantigens as tools for cancer immunotherapy. Chemical Communications, 2011, 47, 382-384.	4.1	9
26	Synthesis of a MUC1-glycopeptide–BSA conjugate vaccine bearing the 3′-deoxy-3′-fluoro-Thomsen–Friedenreich antigen. Chemical Communications, 2011, 47, 9903.	4.1	54
27	Synthesis of fluorinated Thomsen–Friedenreich antigens: direct deoxyfluorination of αGalNAc-threonine tert-butyl esters. Organic and Biomolecular Chemistry, 2011, 9, 5541.	2.8	16
28	Synthesis and Antibody Binding of Highly Fluorinated Amphiphilic MUC1 Glycopeptide Antigens. European Journal of Organic Chemistry, 2011, 2011, 3878-3887.	2.4	6
29	Fluorinated Glycosyl Amino Acids for Mucinâ€Like Glycopeptide Antigen Analogues. Chemistry - A European Journal, 2010, 16, 7319-7330.	3.3	51
30	Synthetic Antitumor Vaccines from Tetanus Toxoid Conjugates of MUC1 Glycopeptides with the Thomsen–Friedenreich Antigen and a Fluorine‧ubstituted Analogue. Angewandte Chemie - International Edition, 2010, 49, 8498-8503.	13.8	136
31	Synthesis of glycosylated β3-homo-threonine conjugates for mucin-like glycopeptide antigen analogues. Beilstein Journal of Organic Chemistry, 2010, 6, 47.	2.2	11
32	Langmuirâ^'Blodgett Films of Fluorinated Glycolipids and Polymerizable Lipids and Their Phase Separating Behavior. Langmuir, 2010, 26, 18246-18255.	3.5	10
33	Synthesis of Fluorinated Analogues of Tumor-Associated Carbohydrate and Glycopeptide Antigens. Synlett, 2009, 2009, 2167-2171.	1.8	6
34	Gold catalysis in stereoselective natural product synthesis: (+)-linalool oxide, (â^')-isocyclocapitelline, and (â^')-isochrysotricine. Tetrahedron, 2009, 65, 1902-1910.	1.9	57
35	Golden opportunities in catalysis. Pure and Applied Chemistry, 2008, 80, 1063-1069.	1.9	105
36	Rapid Generation of Molecular Complexity: Synthesis of α-Hydroxyallenes Using Functionalized Grignard Reagents. Synlett, 2007, 2007, 0737-0740.	1.8	1

#	Article	IF	CITATIONS
37	Golden Opportunities in Stereoselective Catalysis: Optimization of Chirality Transfer and Catalyst Efficiency in the Gold-Catalyzed Cycloisomerization of α-Hydroxyallenes to 2,5-Dihydrofurans. Synlett, 2007, 2007, 1790-1794.	1.8	18
38	Predicting and Tuning Physicochemical Properties in Lead Optimization: Amine Basicities. ChemMedChem, 2007, 2, 1100-1115.	3.2	423
39	Multipolar interactions in the D pocket of thrombin: large differences between tricyclic imide and lactam inhibitors. Organic and Biomolecular Chemistry, 2006, 4, 2364-2375.	2.8	29
40	A Fluorine Scan at the Catalytic Center of Thrombin: CF, COH, and COMe Bioisosterism and Fluorine Effects on pKa and logD Values. ChemMedChem, 2006, 1, 611-621.	3.2	55
41	Mapping the Fluorophilicity of a Hydrophobic Pocket: Synthesis and Biological Evaluation of Tricyclic Thrombin Inhibitors Directing Fluorinated Alkyl Groups into the Pâ€Pocket. ChemMedChem, 2006, 1, 1205-1215.	3.2	26
42	Efficient Synthesis of 2-Hydroxy-3,4-dienoates by Oxidation of ZirconiumÂallenyl Enolates with Dimethyldioxirane. Synthesis, 2006, 2006, 2143-2146.	2.3	0
43	The golden gate to catalysis. Organic and Biomolecular Chemistry, 2005, 3, 387-391.	2.8	492
44	Synthesis and Properties of Allenic Natural Products and Pharmaceuticals. Angewandte Chemie - International Edition, 2004, 43, 1196-1216.	13.8	763
45	Synthesis of allenes with organometallic reagents. Tetrahedron, 2004, 60, 11671-11694.	1.9	257
46	Nucleophilic trifluoromethylation of cyclic imides using (trifluoromethyl)trimethylsilane CF3SiMe3. Organic and Biomolecular Chemistry, 2004, 2, 2267-2269.	2.8	25
47	From Amino Acids To Dihydrofurans: Functionalized Allenes in Modern Organic Synthesis. Synthesis, 2002, 2002, 1759-1774.	2.3	117
48	Enantioselective Synthesis of and with Allenes. Angewandte Chemie - International Edition, 2002, 41, 2933.	13.8	151
49	Synthesis of Highly Functionalized Propargylic Alcohols: Direct Addition of Epoxy Acetylides to Aldehydes and Ketones. Helvetica Chimica Acta, 2002, 85, 3176-3184.	1.6	5
50	Gold(III) Chloride Catalyzed Cyclization of α-Hydroxyallenes to 2,5-Dihydrofurans. Organic Letters, 2001, 3, 2537-2538.	4.6	301
51	Recent Advances in Catalytic Enantioselective Michael Additions. Synthesis, 2001, 2001, 0171-0196.	2.3	925
52	New methods for the stereoselective synthesis of 2-hydroxy-3,4-dienoates and functionalized 2,5-dihydrofurans. Tetrahedron Letters, 2000, 41, 9613-9616.	1.4	36
53	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems. , 0, , 145-166.		18