Samuel H Payne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6391689/publications.pdf

Version: 2024-02-01

95	8,103	39	82
papers	citations	h-index	g-index
116	116	116	11319
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell, 2016, 166, 755-765.	28.9	804
2	Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell, 2019, 177, 1035-1049.e19.	28.9	498
3	A Multidimensional Chromatography Technology for In-depth Phosphoproteome Analysis. Molecular and Cellular Proteomics, 2008, 7, 1389-1396.	3.8	472
4	Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell, 2019, 179, 964-983.e31.	28.9	430
5	Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell, 2020, 182, 200-225.e35.	28.9	410
6	Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell, 2021, 39, 509-528.e20.	16.8	327
7	Proteogenomic Characterization of Endometrial Carcinoma. Cell, 2020, 180, 729-748.e26.	28.9	296
8	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell, 2020, 183, 1436-1456.e31.	28.9	273
9	Discovery and revision of <i>Arabidopsis</i> genes by proteogenomics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 21034-21038.	7.1	268
10	Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell, 2021, 184, 5031-5052.e26.	28.9	236
11	Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell, 2021, 39, 361-379.e16.	16.8	189
12	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	6.4	177
13	A proteogenomic portrait of lung squamous cell carcinoma. Cell, 2021, 184, 4348-4371.e40.	28.9	170
14	The utility of protein and mRNA correlation. Trends in Biochemical Sciences, 2015, 40, 1-3.	7.5	168
15	PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data. Nature Methods, 2017, 14, 903-908.	19.0	158
16	A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chemical Science, 2017, 8, 7724-7736.	7.4	156
17	Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics, 2019, 19, e1800361.	2.2	147
18	Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data. Molecular and Cellular Proteomics, 2015, 14, 2301-2307.	3.8	146

#	Article	IF	Citations
19	Methods, Tools and Current Perspectives in Proteogenomics. Molecular and Cellular Proteomics, 2017, 16, 959-981.	3.8	130
20	Informed-Proteomics: open-source software package for top-down proteomics. Nature Methods, 2017, 14, 909-914.	19.0	126
21	Retention and Loss of Amino Acid Biosynthetic Pathways Based on Analysis of Whole-Genome Sequences. Eukaryotic Cell, 2006, 5, 272-276.	3.4	117
22	The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nature Microbiology, 2016, 1, 16065.	13.3	110
23	LIQUID: an-open source software for identifying lipids in LC-MS/MS-based lipidomics data. Bioinformatics, 2017, 33, 1744-1746.	4.1	108
24	Population-Based Sample Reveals Gene–Gender Interactions in Blood Pressure in White Americans. Hypertension, 2007, 49, 96-106.	2.7	107
25	Ancient Regulatory Role of Lysine Acetylation in Central Metabolism. MBio, 2017, 8, .	4.1	105
26	An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer. Molecular and Cellular Proteomics, 2016, 15, 1060-1071.	3.8	104
27	Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. MBio, 2018, 9, .	4.1	86
28	Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma. Cell Reports, 2020, 33, 108276.	6.4	83
29	Fully Automated Sample Processing and Analysis Workflow for Low-Input Proteome Profiling. Analytical Chemistry, 2021, 93, 1658-1666.	6.5	72
30	Archaeosortases and Exosortases Are Widely Distributed Systems Linking Membrane Transit with Posttranslational Modification. Journal of Bacteriology, 2012, 194, 36-48.	2.2	64
31	Proteogenomic strategies for identification of aberrant cancer peptides using largeâ€scale nextâ€generation sequencing data. Proteomics, 2014, 14, 2719-2730.	2.2	62
32	Proteogenomic Analysis of Bacteria and Archaea: A 46 Organism Case Study. PLoS ONE, 2011, 6, e27587.	2.5	62
33	<i><scp>H</scp>aloferax volcanii</i> archaeosortase is required for motility, mating, and <scp>C</scp> â€terminal processing of the <scp>S</scp> â€layer glycoprotein. Molecular Microbiology, 2013, 88, 1164-1175.	2.5	61
34	Phosphorylation-Specific MS/MS Scoring for Rapid and Accurate Phosphoproteome Analysis. Journal of Proteome Research, 2008, 7, 3373-3381.	3.7	51
35	Accurate Annotation of Peptide Modifications through Unrestrictive Database Search. Journal of Proteome Research, 2008, 7, 170-181.	3.7	50
36	A proteogenomic update to Yersinia: enhancing genome annotation. BMC Genomics, 2010, 11, 460.	2.8	50

3

#	Article	IF	Citations
37	Proteogenomic Characterization of Ovarian HGSC Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability. Cell Reports Medicine, 2020, 1, 100004.	6.5	46
38	Identification of Widespread Adenosine Nucleotide Binding in Mycobacterium tuberculosis. Chemistry and Biology, 2013, 20, 123-133.	6.0	45
39	Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts. Journal of Proteome Research, 2016, 15, 691-706.	3.7	44
40	A Preprocessing Tool for Enhanced Ion Mobility–Mass Spectrometry-Based Omics Workflows. Journal of Proteome Research, 2022, 21, 798-807.	3.7	44
41	Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia, 2018, 32, 2374-2387.	7.2	43
42	Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements. Journal of the American Society for Mass Spectrometry, 2014, 25, 2020-2027.	2.8	42
43	Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements. Molecular and Cellular Proteomics, 2014, 13, 3639-3646.	3.8	38
44	Addressing the challenge of soil metaproteome complexity by improving metaproteome depth of coverage through two-dimensional liquid chromatography. Soil Biology and Biochemistry, 2018, 125, 290-299.	8.8	37
45	Familiarity Vs Trust: A Comparative Study of Domain Scientists' Trust in Visual Analytics and Conventional Analysis Methods. IEEE Transactions on Visualization and Computer Graphics, 2017, 23, 271-280.	4.4	36
46	LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets. Bioinformatics, 2013, 29, 2804-2805.	4.1	32
47	Correcting systematic bias and instrument measurement drift with mzRefinery. Bioinformatics, 2015, 31, 3838-3840.	4.1	32
48	VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data. BMC Genomics, 2012, 13, 131.	2.8	31
49	Unexpected Diversity of Signal Peptides in Prokaryotes. MBio, 2012, 3, .	4.1	30
50	Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae. PLoS ONE, 2012, 7, e33903.	2.5	30
51	Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium. BMC Genomics, 2011, 12, 433.	2.8	29
52	How many signal peptides are there in bacteria?. Environmental Microbiology, 2013, 15, 983-990.	3.8	29
53	Increasing confidence of LC–MS identifications by utilizing ion mobility spectrometry. International Journal of Mass Spectrometry, 2013, 354-355, 312-317.	1.5	27
54	Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes. Journal of Proteome Research, 2015, 14, 422-433.	3.7	26

#	Article	IF	CITATIONS
55	An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies. International Journal of Mass Spectrometry, 2018, 427, 91-99.	1.5	25
56	Features of Peptide Fragmentation Spectra in Single-Cell Proteomics. Journal of Proteome Research, 2022, 21, 182-188.	3.7	25
57	Genes essential for phototrophic growth by a purple alphaproteobacterium. Environmental Microbiology, 2017, 19, 3567-3578.	3.8	23
58	A Protein Standard That Emulates Homology for the Characterization of Protein Inference Algorithms. Journal of Proteome Research, 2018, 17, 1879-1886.	3.7	22
59	Simplified and Unified Access to Cancer Proteogenomic Data. Journal of Proteome Research, 2021, 20, 1902-1910.	3.7	21
60	Characterizing the Escherichia coli O157:H7 Proteome Including Protein Associations with Higher Order Assemblies. PLoS ONE, 2011, 6, e26554.	2.5	20
61	Automated Data Extraction from <i>In Situ</i> Protein-Stable Isotope Probing Studies. Journal of Proteome Research, 2014, 13, 1200-1210.	3.7	20
62	Top-Down Characterization of the Post-Translationally Modified Intact Periplasmic Proteome from the Bacterium <i>Novosphingobium aromaticivorans</i> . International Journal of Proteomics, 2013, 2013, 1-10.	2.0	19
63	PGP: parallel prokaryotic proteogenomics pipeline for MPI clusters, high-throughput batch clusters and multicore workstations. Bioinformatics, 2014, 30, 1469-1470.	4.1	19
64	Community Assessment of the Predictability of Cancer Protein and Phosphoprotein Levels from Genomics and Transcriptomics. Cell Systems, 2020, 11, 186-195.e9.	6.2	19
65	Signatures for Mass Spectrometry Data Quality. Journal of Proteome Research, 2014, 13, 2215-2222.	3.7	18
66	Integrative omics analyses broaden treatment targets in human cancer. Genome Medicine, 2018, 10, 60.	8.2	17
67	Bacterial Longevity Requires Protein Synthesis and a Stringent Response. MBio, 2019, 10, .	4.1	17
68	Proteomics Goes to Court: A Statistical Foundation for Forensic Toxin/Organism Identification Using Bottom-Up Proteomics. Journal of Proteome Research, 2018, 17, 3075-3085.	3.7	16
69	Individual Variability of Protein Expression in Human Tissues. Journal of Proteome Research, 2018, 17, 3914-3922.	3.7	15
70	Extracting Pathway-level Signatures from Proteogenomic Data in Breast Cancer Using Independent Component Analysis. Molecular and Cellular Proteomics, 2019, 18, S169-S182.	3.8	15
71	The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity. Scientific Data, 2015, 2, 150041.	5.3	14
72	Toward a standard in structural genome annotation for prokaryotes. Standards in Genomic Sciences, 2015, 10, 45.	1.5	14

#	Article	IF	Citations
73	Regulated Phosphosignaling Associated with Breast Cancer Subtypes and Druggability*. Molecular and Cellular Proteomics, 2019, 18, 1630-1650.	3.8	14
74	AutoCCS: automated collision cross-section calculation software for ion mobility spectrometry–mass spectrometry. Bioinformatics, 2021, 37, 4193-4201.	4.1	13
75	Spatially interacting phosphorylation sites and mutations in cancer. Nature Communications, 2021, 12, 2313.	12.8	12
76	GlyQ-IQ: Glycomics Quintavariate-Informed Quantification with High-Performance Computing and GlycoGrid 4D Visualization. Analytical Chemistry, 2014, 86, 6268-6276.	6.5	11
77	Rapidly Assessing the Quality of Targeted Proteomics Experiments through Monitoring Stable-Isotope Labeled Standards. Journal of Proteome Research, 2019, 18, 694-699.	3.7	11
78	An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics. Journal of the American Society for Mass Spectrometry, 2015, 26, 2002-2008.	2.8	10
79	PIXiE: an algorithm for automated ion mobility arrival time extraction and collision cross section calculation using global data association. Bioinformatics, 2017, 33, 2715-2722.	4.1	10
80	Back Cover: Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics, 2019, 19, 1970085.	2.2	9
81	Treatment of Fingertip Injuries. JBJS Reviews, 2020, 8, e0182-e0182.	2.0	7
82	Calculating Sample Size Requirements for Temporal Dynamics in Single-Cell Proteomics. Molecular and Cellular Proteomics, 2021, 20, 100085.	3.8	7
83	Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks. Molecular and Cellular Proteomics, 2016, 15, 3501-3512.	3.8	6
84	ABRF Proteome Informatics Research Group (iPRG) 2016 Study: Inferring Proteoforms from Bottom-up Proteomics Data. Journal of Biomolecular Techniques, 2018, 29, 39-45.	1.5	6
85	Blazing Signature Filter: a library for fast pairwise similarity comparisons. BMC Bioinformatics, 2018, 19, 221.	2.6	6
86	Detecting fabrication in large-scale molecular omics data. PLoS ONE, 2021, 16, e0260395.	2.5	6
87	A Histoplasma capsulatum Lipid Metabolic Map Identifies Antifungal Targets. MBio, 2021, 12, e0297221.	4.1	6
88	Uncovering Hidden Members and Functions of the Soil Microbiome Using <i>De Novo</i> Metaproteomics. Journal of Proteome Research, 2022, 21, 2023-2035.	3.7	6
89	A Skyline Plugin for Pathway-Centric Data Browsing. Journal of the American Society for Mass Spectrometry, 2016, 27, 1752-1757.	2.8	5
90	Reproducibility and Transparency by Design. Molecular and Cellular Proteomics, 2019, 18, S202-S204.	3.8	5

#	Article	IF	CITATIONS
91	Accounting for Population Variation in Targeted Proteomics. Journal of Proteome Research, 2014, 13, 321-323.	3.7	4
92	cis -Acting Site Controlling Bidirectional Transcription at the Growth-Differentiation Transition in Dictyostelium discoideum. Eukaryotic Cell, 2006, 5, 1104-1110.	3.4	2
93	Online Tools for Teaching Cancer Bioinformatics. Journal of Microbiology and Biology Education, 2021, 22, .	1.0	2
94	Simple and Efficient Data Analysis Dissemination for Individual Laboratories. Journal of Proteome Research, 2020, 19, 4191-4195.	3.7	1
95	Abstract 774: Proteogenomic characterization of high-grade serous ovarian cancer. , 2016, , .		O