Martin A Pule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6390146/publications.pdf

Version: 2024-02-01

279798 276875 6,275 48 23 41 citations h-index g-index papers 49 49 49 6218 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature Medicine, 2008, 14, 1264-1270.	30.7	1,063
2	Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood, 2011, 118, 6050-6056.	1.4	984
3	Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood, 2010, 115, 925-935.	1.4	721
4	An inducible caspase 9 safety switch for T-cell therapy. Blood, 2005, 105, 4247-4254.	1.4	607
5	A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Molecular Therapy, 2005, 12, 933-941.	8.2	426
6	Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nature Medicine, 2019, 25, 1408-1414.	30.7	394
7	A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood, 2014, 124, 1277-1287.	1.4	308
8	Targeting the T cell receptor \hat{I}^2 -chain constant region for immunotherapy of T cell malignancies. Nature Medicine, 2017, 23, 1416-1423.	30.7	196
9	Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS Prodigy. Cytotherapy, 2016, 18, 1002-1011.	0.7	174
10	Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood, 2007, 110, 2793-2802.	1.4	157
11	Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nature Communications, 2021, 12, 444.	12.8	150
12	An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma. Blood, 2018, 131, 746-758.	1.4	131
13	CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nature Medicine, 2021, 27, 1797-1805.	30.7	125
14	Antitumor activity without on-target off-tumor toxicity of GD2–chimeric antigen receptor T cells in patients with neuroblastoma. Science Translational Medicine, 2020, 12, .	12.4	108
15	Comparison of Different Suicide-Gene Strategies for the Safety Improvement of Genetically Manipulated T Cells. Human Gene Therapy Methods, 2012, 23, 376-386.	2.1	102
16	TALEN-Mediated Inactivation of PD-1 in Tumor-Reactive Lymphocytes Promotes Intratumoral T-cell Persistence and Rejection of Established Tumors. Cancer Research, 2016, 76, 2087-2093.	0.9	67
17	Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study. Nature Cancer, 2021, 2, 1321-1337.	13.2	66
18	Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia. Leukemia, 2017, 31, 1087-1095.	7.2	64

#	Article	IF	Citations
19	Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nature Cancer, 2021, 2, 629-642.	13.2	59
20	Durable Responses and Low Toxicity After Fast Off-Rate CD19 Chimeric Antigen Receptor-T Therapy in Adults With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021, 39, 3352-3363.	1.6	59
21	An Optimized GD2-Targeting Retroviral Cassette for More Potent and Safer Cellular Therapy of Neuroblastoma and Other Cancers. PLoS ONE, 2016, 11, e0152196.	2.5	57
22	Artificial T-cell receptors. Cytotherapy, 2003, 5, 211-226.	0.7	53
23	Towards gene therapy for EBV-associated posttransplant lymphoma with genetically modified EBV-specific cytotoxic T cells. Blood, 2014, 124, 2514-2522.	1.4	51
24	Anti-CCR9 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia. Blood, 2022, 140, 25-37.	1.4	29
25	Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.	2.8	24
26	Cytotoxic T cells transduced with chimeric anti-CD19 receptors prevent engraftment of primary lymphoblastic leukemia in vivo. Leukemia, 2010, 24, 1080-1084.	7.2	16
27	Depletion of T cells via Inducible Caspase 9 Increases Safety of Adoptive T-Cell Therapy Against Chronic Hepatitis B. Frontiers in Immunology, 2021, 12, 734246.	4.8	15
28	Flanking-sequence exponential anchored–polymerase chain reaction amplification: a sensitive and highly specific method for detecting retroviral integrant–host–junction sequences. Cytotherapy, 2008, 10, 526-539.	0.7	12
29	Tunable control of CAR T cell activity through tetracycline mediated disruption of protein–protein interaction. Scientific Reports, 2021, 11, 21902.	3.3	12
30	Imaging of X-Ray-Excited Emissions from Quantum Dots and Biological Tissue in Whole Mouse. Scientific Reports, 2019, 9, 19223.	3.3	10
31	Anti-CD1a CAR T cells to selectively target T-ALL. Blood, 2019, 133, 2246-2247.	1.4	9
32	Chimeric antigen receptor T cells for gamma–delta T cell malignancies. Leukemia, 2022, 36, 577-579.	7.2	8
33	A primer set for the rapid isolation of scFv fragments against cell surface antigens from immunised rats. Scientific Reports, 2020, 10, 19168.	3.3	4
34	Multiple Integration Events into Several Putative Oncogenes Was Required To Cause Leukemogenesis in Two Primate Recipients of RCR Contaminated Stem-Cells Blood, 2004, 104, 2102-2102.	1.4	3
35	Three-Module Signaling Endo-Domain Artifical T-Cell Receptor Which Transmits CD28, OX40 and CD3-ζ Signals Enhances IL-2 Release and Proliferative Response in Transduced Primary T-Cells Blood, 2004, 104, 1747-1747.	1.4	2
36	Clonal Dynamics of Early Responder and Long-Term Surviving CAR-T Cells in Humans. Blood, 2019, 134, 52-52.	1.4	2

#	Article	IF	CITATIONS
37	Genetically engineered T-cells for adoptive immunotherapy. Current Opinion in Molecular Therapeutics, 2002, 4, 467-75.	2.8	2
38	A compact and simple method of achieving differential transgene expression by exploiting translational readthrough. BioTechniques, 2022, 72, 143-154.	1.8	2
39	T-Cells Redirected Against the kappa Light Chain of Human Immunoglobulins Target Mature B Cell Derived Malignancies In Vitro and In Vivo Blood, 2005, 106, 612-612.	1.4	1
40	Flanking-Sequence Exponential Anchored (FLEA) PCR - a Sensitive and Highly Specific Method for Detecting Retroviral Integrant-Host-Junction Sequences Blood, 2004, 104, 2112-2112.	1.4	1
41	Siglec-6 CAR T: magic bullet for a moving target. Blood, 2021, 138, 1786-1787.	1.4	1
42	Gene transfer: methods and applications. , 2006, , 661-678.		0
43	Fas Down-Modulation in Epstein Barr Virus (EBV)-Specific Cytotoxic T-Lymphocytes (CTLs) Reduces Their Sensitivity to Fas/Fasl-Induced Apoptosis Blood, 2004, 104, 2647-2647.	1.4	O
44	Epstein Barr Virus (EBV)-Specific Cytotoxic T Lymphocytes (CTL) Expressing an Anti-CD30 Chimeric T Cell Receptor (CTCR) for the Treatment of Hodgkin's Disease (HD) Blood, 2004, 104, 745-745.	1.4	0
45	Inducible Caspase 9 as a Safety Switch in Genetically Modified Cytotoxic T Cells Blood, 2004, 104, 1743-1743.	1.4	O
46	Genetically Modified Her2-Specific T Cells Recognize Low and High Her2 Expressing Breast Cancer Cells Blood, 2005, 106, 5540-5540.	1.4	0
47	Transgenic Expression of IL15 Selectively Expands Antigen Specific Cytotoxic T Cells (CTLs) Enhancing Their Anti-Tumor Effect In Vivo Blood, 2006, 108, 1721-1721.	1.4	0
48	Transgenic Expression of Inducible Caspase9 Suicide Gene for In Vivo Elimination of Antigen Specific Cytotoxic T Cells (CTLs) Engineered To Produce Cytokines Blood, 2006, 108, 137-137.	1.4	0