
Hideki Aizaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6389416/publications.pdf Version: 2024-02-01

HIDERI AIZARI

#	Article	IF	CITATIONS
1	Induction of neutralizing antibodies against hepatitis C virus by a subviral particle-based DNA vaccine. Antiviral Research, 2022, 199, 105266.	4.1	5
2	Fungal Secondary Metabolite Exophillic Acid Selectively Inhibits the Entry of Hepatitis B and D Viruses. Viruses, 2022, 14, 764.	3.3	9
3	IFN-γ‒Induced APOBEC3B Contributes to Merkel Cell Polyomavirus Genome Mutagenesis in Merkel Cell Carcinoma. Journal of Investigative Dermatology, 2022, 142, 1793-1803.e11.	0.7	6
4	Identification of Two Critical Neutralizing Epitopes in the Receptor Binding Domain of Hepatitis B Virus preS1. Journal of Virology, 2021, 95, .	3.4	8
5	Oncogenic transcriptomic profile is sustained in the liver after the eradication of the hepatitis C virus. Carcinogenesis, 2021, 42, 672-684.	2.8	6
6	Cellular OCIAD2 protein is a proviral factor for hepatitis C virus replication. International Journal of Biological Macromolecules, 2021, 188, 147-159.	7.5	3
7	NTCP Oligomerization Occurs Downstream of the NTCP-EGFR Interaction during Hepatitis B Virus Internalization. Journal of Virology, 2021, 95, e0093821.	3.4	11
8	Development of an intervention system for linkage-to-care and follow-up for hepatitis B and C virus carriers. Hepatology International, 2021, , 1.	4.2	2
9	The machinery for endocytosis of epidermal growth factor receptor coordinates the transport of incoming hepatitis B virus to the endosomal network. Journal of Biological Chemistry, 2020, 295, 800-807.	3.4	30
10	Non-nucleoside hepatitis B virus polymerase inhibitors identified by an in vitro polymerase elongation assay. Journal of Gastroenterology, 2020, 55, 441-452.	5.1	7
11	MCPIP1 reduces HBV-RNA by targeting its epsilon structure. Scientific Reports, 2020, 10, 20763.	3.3	10
12	Sphingomyelin Is Essential for the Structure and Function of the Double-Membrane Vesicles in Hepatitis C Virus RNA Replication Factories. Journal of Virology, 2020, 94, .	3.4	19
13	EBV‣MP1 induces APOBEC3s and mitochondrial DNA hypermutation in nasopharyngeal cancer. Cancer Medicine, 2020, 9, 7663-7671.	2.8	12
14	Surfeit 4 Contributes to the Replication of Hepatitis C Virus Using Double-Membrane Vesicles. Journal of Virology, 2020, 94, .	3.4	14
15	The machinery for endocytosis of epidermal growth factor receptor coordinates the transport of incoming hepatitis B virus to the endosomal network. Journal of Biological Chemistry, 2020, 295, 800-807.	3.4	37
16	Establishment of infectious genotype 4 cell culture-derived hepatitis C virus. Journal of General Virology, 2020, 101, 188-197.	2.9	5
17	Activation of protein kinase R by hepatitis C virus RNA-dependent RNA polymerase. Virology, 2019, 529, 226-233.	2.4	12
18	Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8487-8492.	7.1	170

Hideki Aizaki

#	Article	IF	CITATIONS
19	A Single Adaptive Mutation in Sodium Taurocholate Cotransporting Polypeptide Induced by Hepadnaviruses Determines Virus Species Specificity. Journal of Virology, 2019, 93, .	3.4	26
20	Chemical array system, a platform to identify novel hepatitis B virus entry inhibitors targeting sodium taurocholate cotransporting polypeptide. Scientific Reports, 2018, 8, 2769.	3.3	17
21	High-throughput neutralization assay for multiple flaviviruses based on single-round infectious particles using dengue virus type 1 reporter replicon. Scientific Reports, 2018, 8, 16624.	3.3	43
22	The aryl hydrocarbon receptor–cytochrome P450 1A1 pathway controls lipid accumulation and enhances the permissiveness for hepatitis C virus assembly. Journal of Biological Chemistry, 2018, 293, 19559-19571.	3.4	42
23	A new strategy to identify hepatitis B virus entry inhibitors by AlphaScreen technology targeting the envelope-receptor interaction. Biochemical and Biophysical Research Communications, 2018, 501, 374-379.	2.1	28
24	Troglitazone Impedes the Oligomerization of Sodium Taurocholate Cotransporting Polypeptide and Entry of Hepatitis B Virus Into Hepatocytes. Frontiers in Microbiology, 2018, 9, 3257.	3.5	38
25	Functional association of cellular microtubules with viral capsid assembly supports efficient hepatitis B virus replication. Scientific Reports, 2017, 7, 10620.	3.3	41
26	A new class of hepatitis B and D virus entry inhibitors, proanthocyanidin and its analogs, that directly act on the viral large surface proteins. Hepatology, 2017, 65, 1104-1116.	7.3	63
27	Bivalent vaccine platform based on Japanese encephalitis virus (JEV) elicits neutralizing antibodies against JEV and hepatitis C virus. Scientific Reports, 2016, 6, 28688.	3.3	7
28	Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B. Journal of Virology, 2016, 90, 3093-3111.	3.4	21
29	Dysregulation of Retinoic Acid Receptor Diminishes Hepatocyte Permissiveness to Hepatitis B Virus Infection through Modulation of Sodium Taurocholate Cotransporting Polypeptide (NTCP) Expression. Journal of Biological Chemistry, 2015, 290, 5673-5684.	3.4	58
30	A Novel Tricyclic Polyketide, Vanitaracin A, Specifically Inhibits the Entry of Hepatitis B and D Viruses by Targeting Sodium Taurocholate Cotransporting Polypeptide. Journal of Virology, 2015, 89, 11945-11953.	3.4	79
31	Development of hepatitis C virus genotype 3a cell culture system. Hepatology, 2014, 60, 1838-1850.	7.3	45
32	Alternative endocytosis pathway for productive entry of hepatitis C virus. Journal of General Virology, 2014, 95, 2658-2667.	2.9	21
33	Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochemical and Biophysical Research Communications, 2014, 443, 808-813.	2.1	267
34	Production of single-round infectious chimeric flaviviruses with DNA-based Japanese encephalitis virus replicon. Journal of General Virology, 2014, 95, 60-65.	2.9	35
35	Signal Peptidase Complex Subunit 1 Participates in the Assembly of Hepatitis C Virus through an Interaction with E2 and NS2. PLoS Pathogens, 2013, 9, e1003589.	4.7	47
36	Interleukin-1 and Tumor Necrosis Factor-α Trigger Restriction of Hepatitis B Virus Infection via a Cytidine Deaminase Activation-induced Cytidine Deaminase (AID). Journal of Biological Chemistry, 2013, 288, 31715-31727.	3.4	140

Hideki Aizaki

#	Article	IF	CITATIONS
37	Antiviral Activity of Glycyrrhizin against Hepatitis C Virus In Vitro. PLoS ONE, 2013, 8, e68992.	2.5	101
38	Visualization and Measurement of ATP Levels in Living Cells Replicating Hepatitis C Virus Genome RNA. PLoS Pathogens, 2012, 8, e1002561.	4.7	90
39	Trans-complemented hepatitis C virus particles as a versatile tool for study of virus assembly and infection. Virology, 2012, 432, 29-38.	2.4	27
40	Hepatitis C Virus Translation Preferentially Depends on Active RNA Replication. PLoS ONE, 2012, 7, e43600.	2.5	12
41	Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology, 2011, 410, 38-47.	2.4	65
42	Production of Infectious Hepatitis C Virus by Using RNA Polymerase I-Mediated Transcription. Journal of Virology, 2010, 84, 5824-5835.	3.4	44
43	Involvement of Creatine Kinase B in Hepatitis C Virus Genome Replication through Interaction with the Viral NS4A Protein. Journal of Virology, 2009, 83, 5137-5147.	3.4	42
44	Interaction of Hepatitis C Virus Nonstructural Protein 5A with Core Protein Is Critical for the Production of Infectious Virus Particles. Journal of Virology, 2008, 82, 7964-7976.	3.4	322
45	Critical Role of Virion-Associated Cholesterol and Sphingolipid in Hepatitis C Virus Infection. Journal of Virology, 2008, 82, 5715-5724.	3.4	186
46	Polypyrimidine-tract-binding Protein is a Component of the HCV RNA Replication Complex and Necessary for RNA Synthesis. Journal of Biomedical Science, 2006, 13, 469-480.	7.0	40
47	Human VAP-B Is Involved in Hepatitis C Virus Replication through Interaction with NS5A and NS5B. Journal of Virology, 2005, 79, 13473-13482.	3.4	181
48	Interactions between Viral Nonstructural Proteins and Host Protein hVAP-33 Mediate the Formation of Hepatitis C Virus RNA Replication Complex on Lipid Raft. Journal of Virology, 2004, 78, 3480-3488.	3.4	286
49	Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology, 2004, 324, 450-461.	2.4	247
50	Hepatitis C Virus RNA Replication Occurs on a Detergent-Resistant Membrane That Cofractionates with Caveolin-2. Journal of Virology, 2003, 77, 4160-4168.	3.4	241
51	Expression profiling of liver cell lines expressing entire or parts of hepatitis C virus open reading frame. Hepatology, 2002, 36, 1431-1438.	7.3	26
52	A Human Liver Cell Line Exhibits Efficient Translation of HCV RNAs Produced by a Recombinant Adenovirus Expressing T7 RNA Polymerase. Virology, 1998, 250, 140-150.	2.4	65