Anna Raffaello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6388526/publications.pdf

Version: 2024-02-01

33 papers

6,547 citations

236925 25 h-index 414414 32 g-index

33 all docs

docs citations

33

33 times ranked

7604 citing authors

#	Article	IF	Citations
1	A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature, 2011, 476, 336-340.	27.8	1,622
2	Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology, 2012, 13, 566-578.	37.0	1,369
3	Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB Journal, 2007, 21, 140-155.	0.5	495
4	MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity. Molecular Cell, 2014, 53, 726-737.	9.7	441
5	The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO Journal, 2013, 32, 2362-2376.	7.8	408
6	Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends in Biochemical Sciences, 2016, 41, 1035-1049.	7.5	382
7	Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nature Genetics, 2014, 46, 188-193.	21.4	311
8	The Mitochondrial Calcium Uniporter Controls Skeletal Muscle Trophism InÂVivo. Cell Reports, 2015, 10, 1269-1279.	6.4	170
9	The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Physiological Roles. Journal of Biological Chemistry, 2013, 288, 10750-10758.	3.4	131
10	JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. Journal of Cell Biology, 2010, 191, 101-113.	5 . 2	127
11	Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Pflugers Archiv European Journal of Physiology, 2018, 470, 1165-1179.	2.8	119
12	Crosstalk between Calcium and ROS in Pathophysiological Conditions. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-18.	4.0	115
13	A MICU1 Splice Variant Confers High Sensitivity to the Mitochondrial Ca2+ Uptake Machinery of Skeletal Muscle. Molecular Cell, 2016, 64, 760-773.	9.7	97
14	Mitochondrial longevity pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 260-268.	4.1	71
15	Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling. Physiological Genomics, 2006, 25, 60-74.	2.3	70
16	Adrenergic Signaling Regulates Mitochondrial Ca ²⁺ Uptake Through Pyk2-Dependent Tyrosine Phosphorylation of the Mitochondrial Ca ²⁺ Uniporter. Antioxidants and Redox Signaling, 2014, 21, 863-879.	5.4	69
17	Human MYO18B, a Novel Unconventional Myosin Heavy Chain Expressed in Striated Muscles Moves into the Myonuclei upon Differentiation. Journal of Molecular Biology, 2003, 326, 137-149.	4.2	66
18	Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2457-2464.	4.1	62

#	Article	IF	CITATIONS
19	The mitochondrial Ca2+ uniporter. Cell Calcium, 2012, 52, 16-21.	2.4	61
20	Meta-analysis of expression signatures of muscle atrophy: gene interaction networks in early and late stages. BMC Genomics, 2008, 9, 630.	2.8	55
21	Physiological Characterization of a Plant Mitochondrial Calcium Uniporter in Vitro and in Vivo. Plant Physiology, 2017, 173, 1355-1370.	4.8	54
22	Overexpression of Mitochondrial Calcium Uniporter Causes Neuronal Death. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	42
23	Parkin-dependent regulation of the MCU complex component MICU1. Scientific Reports, 2018, 8, 14199.	3.3	31
24	The Ankrd2, Cdkn1c and Calcyclin Genes are Under the Control of MyoD During Myogenic Differentiation. Journal of Molecular Biology, 2005, 349, 349-366.	4.2	30
25	The molecular complexity of the Mitochondrial Calcium Uniporter. Cell Calcium, 2021, 93, 102322.	2.4	29
26	Increased mitochondrial calcium uniporter in adipocytes underlies mitochondrial alterations associated with insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E641-E650.	3.5	25
27	Melatonin activates <scp>FIS</scp> 1, <scp>DYN</scp> 1, and <scp>DYN</scp> 2 <i>Plasmodium falciparum</i> relatedâ€genes for mitochondria fission: Mitoemeraldâ€ <scp>GFP</scp> as a tool to visualize mitochondria structure. Journal of Pineal Research, 2019, 66, e12484.	7.4	25
28	The ER-mitochondria tether at the hub of Ca2+ signaling. Current Opinion in Physiology, 2020, 17, 261-268.	1.8	21
29	The dominant-negative mitochondrial calcium uniporter subunit MCUb drives macrophage polarization during skeletal muscle regeneration. Science Signaling, 2021, 14, eabf3838.	3.6	17
30	Parvalbumin affects skeletal muscle trophism through modulation of mitochondrial calcium uptake. Cell Reports, 2021, 35, 109087.	6.4	16
31	Excessive Accumulation of Ca2 + in Mitochondria of Y522S-RYR1 Knock-in Mice: A Link Between Leak From the Sarcoplasmic Reticulum and Altered Redox State. Frontiers in Physiology, 2019, 10, 1142.	2.8	14
32	The Splicing of the Mitochondrial Calcium Uniporter Genuine Activator MICU1 Is Driven by RBFOX2 Splicing Factor during Myogenic Differentiation. International Journal of Molecular Sciences, 2022, 23, 2517.	4.1	2
33	Molecular Players of Mitochondrial Calcium Signaling: Similarities and Different Aspects in Various Organisms. Biological and Medical Physics Series, 2017, , 41-65.	0.4	0