Dvir Aran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/638541/publications.pdf

Version: 2024-02-01

		331670	361022
39	8,871	21	35
papers	citations	h-index	g-index
5 1	F 1	F 1	17411
51	51	51	17411
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Implementation of machine learning models for the prediction of vaginal birth after cesarean delivery. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 3677-3683.	1.5	14
2	Real-world comparison of outcomes in the first line treatment of metastatic melanoma according to BRAF mutation status: Nivolumab and ipilimumab therapy vs. nivolumab monotherapy Journal of Clinical Oncology, 2022, 40, e21519-e21519.	1.6	0
3	Real-world data comparing FOLFIRINOX versus gemcitabine nab-paclitaxel as first-line treatment of metastatic pancreatic ductal adenocarcinoma patients in the United States Journal of Clinical Oncology, 2022, 40, e16271-e16271.	1.6	O
4	Real-world data comparing atezolizumab plus taxane therapy versus taxane alone as first-line treatment of metastatic triple-negative breast cancer patients in the United States Journal of Clinical Oncology, 2022, 40, e18767-e18767.	1.6	1
5	Real-world data comparing third and subsequent line regimens for treatment of metastatic triple-negative breast cancer in the United States Journal of Clinical Oncology, 2022, 40, e18765-e18765.	1.6	O
6	Comparison of FOLFIRINOX vs Gemcitabine Plus Nab-Paclitaxel as First-Line Chemotherapy for Metastatic Pancreatic Ductal Adenocarcinoma. JAMA Network Open, 2022, 5, e2216199.	5.9	21
7	CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nature Neuroscience, 2021, 24, 234-244.	14.8	120
8	Extracting insights from heterogeneous tissues. Nature Computational Science, 2021, 1, 247-248.	8.0	1
9	Molecular programs of fibrotic change in aging human lung. Nature Communications, 2021, 12, 6309.	12.8	33
10	Development and validation of a machineâ€kearning model for prediction of shoulder dystocia. Ultrasound in Obstetrics and Gynecology, 2020, 56, 588-596.	1.7	34
11	Prior presumed coronavirus infection reduces COVID-19 risk: A cohort study. Journal of Infection, 2020, 81, 923-930.	3.3	39
12	629: MFMU Calculator versus machine learning techniques for predicting VBAC success – Which model works best?. American Journal of Obstetrics and Gynecology, 2020, 222, S401-S402.	1.3	0
13	Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human Bladder Cancer. Cell, 2020, 181, 1612-1625.e13.	28.9	436
14	Cell-Type Enrichment Analysis of Bulk Transcriptomes Using xCell. Methods in Molecular Biology, 2020, 2120, 263-276.	0.9	86
15	Human splice factors contribute to latent HIV infection in primary cell models and blood CD4+ T cells from ART-treated individuals. PLoS Pathogens, 2020, 16, e1009060.	4.7	18
16	Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types. Nature Communications, 2019, 10, 3574.	12.8	111
17	Heterogeneity in HIV and cellular transcription profiles in cell line models of latent and productive infection: implications for HIV latency. Retrovirology, 2019, 16, 32.	2.0	35
18	657: Improving the prediction of shoulder dystocia using artificial intelligence – a novel approach. American Journal of Obstetrics and Gynecology, 2019, 220, S435-S436.	1.3	1

#	Article	IF	Citations
19	Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology, 2019, 20, 163-172.	14.5	2,330
20	CD161 contributes to prenatal immune suppression of IFN-γ–producing PLZF+ T cells. Journal of Clinical Investigation, 2019, 129, 3562-3577.	8.2	55
21	Global Transcriptome Analysis of RNA Abundance Regulation by ADAR in Lung Adenocarcinoma. EBioMedicine, 2018, 27, 167-175.	6.1	23
22	Abstract 2398: Tumor cell-adipocyte gap junctions activate lipolysis in breast cancer. , 2018, , .		0
23	Comprehensive analysis of normal adjacent to tumor transcriptomes. Nature Communications, 2017, 8, 1077.	12.8	394
24	Precision annotation of digital samples in NCBI's gene expression omnibus. Scientific Data, 2017, 4, 170125.	5.3	44
25	Cancer Cell–Autonomous Parainflammation Mimics Immune Cell Infiltration. Cancer Research, 2017, 77, 3740-3744.	0.9	12
26	xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biology, 2017, 18, 220.	8.8	2,572
27	Widespread parainflammation in human cancer. Genome Biology, 2016, 17, 145.	8.8	87
28	Digitally deconvolving the tumor microenvironment. Genome Biology, 2016, 17, 175.	8.8	20
29	Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues. Scientific Reports, 2016, 6, 24799.	3.3	155
30	Embryonic Stem Cell (ES)-Specific Enhancers Specify the Expression Potential of ES Genes in Cancer. PLoS Genetics, 2016, 12, e1005840.	3.5	10
31	Systematic pan-cancer analysis of tumour purity. Nature Communications, 2015, 6, 8971.	12.8	937
32	Premature aging of leukocyte DNA methylation is associated with type 2 diabetes prevalence. Clinical Epigenetics, 2015, 7, 35.	4.1	34
33	S-6. Cytokine, 2014, 70, 22.	3.2	1
34	Unmasking risk loci: <scp>DNA</scp> methylation illuminates the biology of cancer predisposition. BioEssays, 2014, 36, 184-190.	2.5	16
35	DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biology, 2013, 14, R21.	9.6	288
36	Aging is associated with highly defined epigenetic changes in the human epidermis. Epigenetics and Chromatin, 2013, 6, 36.	3.9	72

#	Article	IF	CITATIONS
37	DNA Methylation of Transcriptional Enhancers and Cancer Predisposition. Cell, 2013, 154, 11-13.	28.9	156
38	Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Human Molecular Genetics, 2012, 21, 371-383.	2.9	317
39	Replication timing-related and gene body-specific methylation of active human genes. Human Molecular Genetics, 2011, 20, 670-680.	2.9	256