Sara D'Angelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6381558/publications.pdf Version: 2024-02-01

SARA D'ANCELO

#	Article	IF	CITATIONS
1	Ligand-targeted theranostic nanomedicines against cancer. Journal of Controlled Release, 2016, 240, 267-286.	9.9	154
2	Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Frontiers in Immunology, 2018, 9, 395.	4.8	66
3	Rapid interactome profiling by massive sequencing. Nucleic Acids Research, 2010, 38, e110-e110.	14.5	62
4	Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1877-1882.	7.1	55
5	The antibody mining toolbox. MAbs, 2014, 6, 160-172.	5.2	41
6	Targeted molecular-genetic imaging and ligand-directed therapy in aggressive variant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12786-12791.	7.1	39
7	From deep sequencing to actual clones. Protein Engineering, Design and Selection, 2014, 27, 301-307.	2.1	37
8	Recombinant renewable polyclonal antibodies. MAbs, 2015, 7, 32-41.	5.2	31
9	Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12780-12785.	7.1	31
10	Profiling celiac disease antibody repertoire. Clinical Immunology, 2013, 148, 99-109.	3.2	27
11	Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. MAbs, 2021, 13, 1980942.	5.2	24
12	Filtering "genic" open reading frames from genomic DNA samples for advanced annotation. BMC Genomics, 2011, 12, S5.	2.8	23
13	A comprehensive analysis of filamentous phage display vectors for cytoplasmic proteins: an analysis with different fluorescent proteins. Nucleic Acids Research, 2010, 38, e22-e22.	14.5	21
14	Autoantibodies against the cell surface–associated chaperone GRP78 stimulate tumor growth via tissue factor. Journal of Biological Chemistry, 2017, 292, 21180-21192.	3.4	17
15	A pandemic-enabled comparison of discovery platforms demonstrates a nail̂ve antibody library can match the best immune-sourced antibodies. Nature Communications, 2022, 13, 462.	12.8	17
16	Antibody library selection by the β-lactamase protein fragment complementation assay. Protein Engineering, Design and Selection, 2009, 22, 149-158.	2.1	16
17	Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): methodology and applications. JCI Insight, 2018, 3, .	5.0	15
18	A single donor is sufficient to produce a highly functional in vitro antibody library. Communications Biology, 2021, 4, 350.	4.4	12

Sara D'Angelo

#	Article	IF	CITATIONS
19	Profiling the Autoantibody Repertoire by Screening Phage-Displayed Human cDNA Libraries. Methods in Molecular Biology, 2009, 570, 353-369.	0.9	12
20	Recombinant Antibodies against Mycolactone. Toxins, 2019, 11, 346.	3.4	9
21	Specific binder for Lightning-Link® biotinylated proteins from an antibody phage library. Journal of Immunological Methods, 2013, 395, 83-87.	1.4	8
22	Exploiting next-generation sequencing in antibody selections $\hat{a} \in \hat{a}$ a simple PCR method to recover binders. MAbs, 2020, 12, 1701792.	5.2	7
23	Rapid purification of billions of circulating CD19+ B cells directly from leukophoresis samples. New Biotechnology, 2018, 46, 14-21.	4.4	6
24	Primer Design and Inverse PCR on Yeast Display Antibody Selection Outputs. Methods in Molecular Biology, 2018, 1721, 35-45.	0.9	4