Xue-Wei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6380480/publications.pdf

Version: 2024-02-01

86 papers 2,923 citations

147801 31 h-index 206112 48 g-index

95 all docs 95 docs citations 95 times ranked 2974 citing authors

#	Article	IF	CITATIONS
1	N-Heterocyclic Carbene-Mediated Oxidative Esterification of Aldehydes: Ester Formation and Mechanistic Studies. Journal of Organic Chemistry, 2011, 76, 3016-3023.	3.2	109
2	Venturing beyond Donor-Controlled Glycosylation: New Perspectives toward Anomeric Selectivity. Accounts of Chemical Research, 2018, 51, 628-639.	15.6	106
3	Recent progress of <i>C</i> -glycosylation methods in the total synthesis of natural products and pharmaceuticals. Organic and Biomolecular Chemistry, 2018, 16, 1791-1806.	2.8	101
4	Direct <i>C</i> -Glycosylation of Organotrifluoroborates with Glycosyl Fluorides and Its Application to the Total Synthesis of (+)-Varitriol. Organic Letters, 2011, 13, 42-45.	4.6	92
5	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	12.8	88
6	Oxidative Heck Reaction of Glycals and Aryl Hydrazines: A Palladium-Catalyzed <i>C</i> Glycosylation. Journal of Organic Chemistry, 2013, 78, 8821-8825.	3.2	87
7	Regio- and Stereoselective Synthesis of 2-Deoxy- <i>C</i> -aryl Glycosides via Palladium Catalyzed Decarboxylative Reactions. Organic Letters, 2011, 13, 4608-4611.	4.6	83
8	The intriguing dual-directing effect of 2-cyanobenzyl ether for a highly stereospecific glycosylation reaction. Nature Communications, 2014, 5, 5051.	12.8	83
9	Design of a "Turn-Off/Turn-On―Biosensor: Understanding Carbohydrate-Lectin Interactions for Use in Noncovalent Drug Delivery. Journal of the American Chemical Society, 2012, 134, 15229-15232.	13.7	72
10	Stereoselective βâ€ <i>C</i> â€Glycosylation by a Palladiumâ€Catalyzed Decarboxylative Allylation: Formal Synthesis of Aspergillideâ€A. Angewandte Chemie - International Edition, 2013, 52, 5134-5137.	13.8	69
11	Nanoparticles of Short Cationic Peptidopolysaccharide Self-Assembled by Hydrogen Bonding with Antibacterial Effect against Multidrug-Resistant Bacteria. ACS Applied Materials & Emp; Interfaces, 2017, 9, 38288-38303.	8.0	67
12	Nâ∈Heterocyclic Carbene Catalyzed Homoenolateâ∈Addition Reaction of Enals and Nitroalkenes: Asymmetric Synthesis of 5â€Carbonâ€Synthon δâ€Nitroesters. Angewandte Chemie - International Edition, 2012, 51, 8276-8280.	13.8	65
13	N-Heterocyclic Carbene-Catalyzed Intramolecular Aldehydeâ^'Nitrile Cross Coupling: An Easy Access to 3- Aminochromones. Organic Letters, 2010, 12, 352-355.	4.6	58
14	Nâ€Heterocyclic Carbene Catalyzed Intramolecular Hydroacylation of Activated Alkynes: Synthesis of Chromones. Advanced Synthesis and Catalysis, 2011, 353, 219-225.	4.3	58
15	3â€Aminodeoxypyranoses in Glycosylation: Diversityâ€Oriented Synthesis and Assembly in Oligosaccharides. Angewandte Chemie - International Edition, 2017, 56, 5227-5231.	13.8	55
16	Mechanistic Insights into the Substrateâ€Controlled Stereochemistry of Glycals in Oneâ€Pot Rhodiumâ€Catalyzed Aziridination and Aziridine Ring Opening. Chemistry - A European Journal, 2010, 16, 588-594.	3.3	53
17	PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function. Nature Chemical Biology, 2020, 16, 876-886.	8.0	51
18	Direct Aldehyde Csp ² â^'H Functionalization through Visibleâ€Lightâ€Mediated Photoredox Catalysis. Chemistry - A European Journal, 2017, 23, 15899-15902.	3.3	50

#	Article	IF	Citations
19	An efficient synthesis of chiral phosphinyl oxide pyrrolidines and their application to asymmetric direct aldol reactions. Organic and Biomolecular Chemistry, 2008, 6, 3997.	2.8	49
20	Sugarâ€Based Synthesis of Tamiflu and Its Inhibitory Effects on Cell Secretion. Chemistry - A European Journal, 2010, 16, 4533-4540.	3.3	48
21	Highly stereoselective synthesis of aminoglycosides via rhodium-catalyzed and substrate-controlled aziridination of glycals. Organic and Biomolecular Chemistry, 2009, 7, 1284.	2.8	46
22	N-Heterocyclic Carbene Catalyzed <i>C</i> -Glycosylation: A Concise Approach from Stetter Reaction. Organic Letters, 2012, 14, 174-177.	4.6	45
23	Recent advances in reagent-controlled stereoselective/stereospecific glycosylation. Carbohydrate Research, 2019, 473, 72-81.	2.3	44
24	Catalyst-Controlled Stereoselective <i>O</i> -Glycosylation: Pd(0) vs Pd(II). ACS Catalysis, 2017, 7, 5456-5460.	11.2	42
25	Aryl/hetero-arylethyne bridged dyes: the effect of planar π-bridge on the performance of dye-sensitized solar cells. New Journal of Chemistry, 2011, 35, 127-136.	2.8	40
26	Reversing the Stereoselectivity of a Palladiumâ€Catalyzed Oâ€Glycosylation through an Innerâ€Sphere or Outerâ€Sphere Pathway. Angewandte Chemie - International Edition, 2015, 54, 604-607.	13.8	40
27	Interrupted Iminoâ€Nazarov Cyclization of 1â€Aminopentadienyl Cation and Related Cascade Process. Angewandte Chemie - International Edition, 2014, 53, 10742-10746.	13.8	40
28	A Short and Highly Efficient Synthesis of <scp>l</scp> -Ristosamine and <scp>l</scp> - <i>epi</i> -Daunosamine Glycosides. Organic Letters, 2011, 13, 652-655.	4.6	38
29	A highly efficient dual catalysis approach for C-glycosylation: addition of (o-azaaryl)carboxaldehyde to glycals. Chemical Communications, 2014, 50, 13391-13393.	4.1	38
30	Stimuli-responsive multifunctional glyconanoparticle platforms for targeted drug delivery and cancer cell imaging. Chemical Science, 2017, 8, 3980-3988.	7.4	38
31	Synthesis of Antibacterial Glycosylated Polycaprolactones Bearing Imidazoliums with Reduced Hemolytic Activity. Biomacromolecules, 2019, 20, 949-958.	5.4	36
32	Multifunctional Glycoâ€Nanosheets to Eradicate Drugâ€Resistant Bacteria on Wounds. Advanced Healthcare Materials, 2020, 9, e2000265.	7.6	33
33	βâ€Type Glycosidic Bond Formation by Palladiumâ€Catalyzed Decarboxylative Allylation. Chemistry - A European Journal, 2013, 19, 14047-14051.	3.3	32
34	Visible-Light Photoredox Enables Ketone Carbonyl Alkylation for Easy Access to Tertiary Alcohols. ACS Catalysis, 2019, 9, 9009-9014.	11.2	32
35	Glycosylated porphyrin derivatives and their photodynamic activity in cancer cells. MedChemComm, 2011, 2, 371.	3.4	31
36	Total Synthesis of Sialic Acid by a Sequential Rhodiumâ€Catalyzed Aziridination and Barbier Allylation of <scp>D</scp> â€Glycal. Angewandte Chemie - International Edition, 2011, 50, 12054-12057.	13.8	31

#	Article	IF	CITATIONS
37	Stereo- and regioselective glycosylation with protection-less sugar derivatives: an alluring strategy to access glycans and natural products. Chemical Society Reviews, 2019, 48, 4006-4018.	38.1	31
38	Palladium-Catalyzed Glycosylation: Novel Synthetic Approach to Diverse <i>N</i> -Heterocyclic Glycosides. Organic Letters, 2015, 17, 1357-1360.	4.6	30
39	Green glycosylation promoted by reusable biomass carbonaceous solid acid: an easy access to \hat{l}^2 -stereoselective terpene galactosides. Green Chemistry, 2011, 13, 573.	9.0	28
40	Facile Access to $\langle i \rangle cis \langle i \rangle \hat{a} \in \mathbb{Z}$, $\hat{a} \in \mathbb{D}$ is ubstituted Tetrahydropyrans by Palladium $\hat{a} \in \mathbb{C}$ at alyzed Decarboxylative Allylation: Total Syntheses of $(\hat{A}_{\pm})\hat{a} \in \mathbb{C}$ entrolobine and $(+)\hat{a} \in \mathbb{D}$ ecytospolides A and B. Chemistry - A European Journal, 2014, 20, 405-409.	3.3	28
41	One-pot synthesis of \hat{I}^2 -N-glycosyl imidazole analogues via a palladium-catalysed decarboxylative allylation. Chemical Communications, 2014, 50, 4222.	4.1	28
42	Palladium Catalyzed Stereoselective $\langle i \rangle C \langle i \rangle$ -Glycosylation of Glycals with Enol Triflates. Organic Letters, 2011, 13, 5648-5651.	4.6	27
43	Stereocontrolled <i>O</i> -Glycosylation with Palladium-Catalyzed Decarboxylative Allylation. Journal of Organic Chemistry, 2014, 79, 11473-11482.	3.2	27
44	A minimalist approach to stereoselective glycosylation with unprotected donors. Nature Communications, 2017, 8, 1146.	12.8	27
45	Palladium-Catalyzed Decarboxylative Allylation/Wittig Reaction: Substrate-Controlled Synthesis of <i>C</i> -Vinyl Glycosides. Organic Letters, 2017, 19, 416-419.	4.6	26
46	Metal-free visible light photoredox enables generation of carbyne equivalents ⟨i⟩via⟨ i⟩ phosphonium ylide Câ€"H activation. Chemical Science, 2019, 10, 1687-1691.	7.4	25
47	Lewis acid–surfactant-combined catalyzed synthesis of 4-aminocyclopentenones from glycals in water. Green Chemistry, 2013, 15, 3180.	9.0	24
48	Palladiumâ€Catalyzed Stereoselective <i>C</i> àê€Glycosylation of Glycals with Sodium Arylsulfinates. European Journal of Organic Chemistry, 2015, 2015, 949-952.	2.4	24
49	Collective Synthesis of 4â€Hydroxyâ€2â€pyridone Alkaloids and Their Antiproliferation Activities. Chemistry - an Asian Journal, 2014, 9, 2548-2554.	3.3	23
50	Directed Orthometalation and the Asymmetric Total Synthesis of <i>N</i> -Deoxymilitarinone A and Torrubiellone B. Organic Letters, 2014, 16, 26-29.	4.6	23
51	Asymmetric syntheses of 8-oxabicyclo[3,2,1]octane and 11-oxatricyclo[5.3.1.0]undecane from glycals. Chemical Science, 2017, 8, 6656-6661.	7.4	22
52	Key residues of the receptor binding domain in the spike protein of SARS-CoV-2 mediating the interactions with ACE2: a molecular dynamics study. Nanoscale, 2021, 13, 9364-9370.	5.6	22
53	Pathways leading to 3-amino- and 3-nitro-2,3-dideoxy sugars: strategies and synthesis. RSC Advances, 2013, 3, 13594.	3.6	21
54	Fabrication of O (dye)-terminated anatase TiO2 nanosheets for dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 2054.	30.8	20

#	Article	IF	Citations
55	The first intermolecular interrupted imino-Nazarov reaction: expeditious access to carbocyclic nucleoside analogues. Chemical Science, 2016, 7, 1100-1103.	7.4	20
56	Pd-catalyzed cross-coupling of aromatic compounds with carboxylic acids via C–H bond activation. Organic Chemistry Frontiers, 2015, 2, 502-505.	4.5	18
57	Diastereoselective Synthesis of <i>C</i> -Vinyl Glycosides via Gold(I)-Catalyzed Tandem 1,3-Acyloxy Migration/Ferrier Rearrangement. Organic Letters, 2018, 20, 16-19.	4.6	18
58	Oxadiazabicyclooctenone as a versatile monomer for the construction of pH sensitive functional polymers <i>via</i> ROMP. Polymer Chemistry, 2018, 9, 372-377.	3.9	18
59	Superbase-Catalyzed Stereo- and Regioselective Glycosylation with 2-Nitroglycals: Facile Access to 2-Amino-2-deoxy- <i>O</i> -glycosides. ACS Catalysis, 2020, 10, 6707-6715.	11.2	18
60	Interrupting Nazarov Reaction with Different Trapping Modality: Utilizing Potassium Alkynyltrifluoroborate as a Ïf-Nucleophile. Organic Letters, 2016, 18, 4458-4461.	4.6	17
61	Ferrier-Type N-Glycosylation: Synthesis of N-Glycosides of Enone Sugars. Journal of Organic Chemistry, 2013, 78, 1293-1299.	3.2	16
62	Regio and stereoselective synthesis of \hat{l}^2 -keto functionalized C-glycosides via iron catalyzed Ferrier rearrangement reactions. RSC Advances, 2014, 4, 34816-34822.	3.6	15
63	NHC catalyzed enantioselective Coates-Claisen rearrangement: a rapid access to the dihydropyran core for oleuropein based secoiridoids. New Journal of Chemistry, 2018, 42, 1832-1839.	2.8	15
64	Raman-encoded, multivalent glycan-nanoconjugates for traceable specific binding and killing of bacteria. Biomaterials Science, 2018, 6, 1339-1346.	5.4	14
65	Direct and Stereoselective Synthesis of 1,3- <i>cis</i> -3- Arylsulphonaminodeoxydisaccharides and Oligosaccharides. Journal of Organic Chemistry, 2012, 77, 5245-5254.	3.2	13
66	Cascade reactions initiated by radical addition of tetrahydrofuran to \hat{l}^2 -bromonitrostyrenes. RSC Advances, 2014, 4, 45191-45197.	3.6	12
67	Iridium-promoted deoxyglycoside synthesis: stereoselectivity and mechanistic insight. Chemical Science, 2021, 12, 2209-2216.	7.4	12
68	A concise route to the highly-functionalized azetidine precursor: the enantioselective synthesis of penaresidin B. Chemical Communications, 2015, 51, 4639-4642.	4.1	11
69	(1â€aryloxyâ€2â€hydroxypropyl)â€phenylpiperazine derivatives suppress <i>Candida albicans</i> virulence by interfering with morphological transition. Microbial Biotechnology, 2018, 11, 1080-1089.	4.2	11
70	Znl ₂ -Directed Stereocontrolled α-Glucosylation. Organic Letters, 2021, 23, 6841-6845.	4.6	11
71	Suprafenacine, an Indazole-Hydrazide Agent, Targets Cancer Cells Through Microtubule Destabilization. PLoS ONE, 2014, 9, e110955.	2.5	10
72	Zinc(II) Iodide-Directed Î ² -Mannosylation: Reaction Selectivity, Mode, and Application. Journal of Organic Chemistry, 2021, 86, 16901-16915.	3.2	8

#	Article	IF	CITATIONS
73	Synthesis and biological activity of novel peptide mimetics as melanocortin receptor agonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1223-1228.	2.2	7
74	Polysubstituted pyrrole derivatives via 1,2-alkenyl migration of novel \hat{l}^3 -amino- $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes and $\hat{l}\pm$ -diazocarbonyls. RSC Advances, 2014, 4, 7275.	3.6	7
75	Alkene Synthesis Using Phosphonium Ylides as Umpolung Reagents. Asian Journal of Organic Chemistry, 2019, 8, 93-96.	2.7	7
76	Palladium(<scp>ii</scp>)-catalyzed stereoselective synthesis of <i>C</i> glycosides from glycals with diaryliodonium salts. Organic and Biomolecular Chemistry, 2020, 18, 2242-2251.	2.8	7
77	Synthetic biohybrid peptidoglycan oligomers enable pan-bacteria-specific labeling and imaging: <i>in vitro</i> and <i>in vivo</i> Chemical Science, 2020, 11, 3171-3179.	7.4	7
78	Design and synthesis of multivalent neoglycoconjugates by click conjugations. Beilstein Journal of Organic Chemistry, 2014, 10, 1325-1332.	2.2	6
79	Recent Development in Ligation Methods for Glycopeptide and Glycoprotein Synthesis. Chemistry - an Asian Journal, 2020, 15, 2548-2557.	3.3	6
80	A mild one-pot synthesis of 2-iminothiazolines from thioureas and 1-bromo-1-nitroalkenes. RSC Advances, 2021, 11, 2221-2225.	3.6	5
81	Catalytic asymmetric oxidative carbonylation-induced kinetic resolution of sterically hindered benzylamines to chiral isoindolinones. Chemical Communications, 2021, 57, 1778-1781.	4.1	5
82	Easy access to secondary and tertiary alcohols via metal-free and light mediated radical carbonyl allylation. Chemical Communications, 2021, 57, 10783-10786.	4.1	5
83	<i>N</i> ‣inked Glycosyl Auxiliaryâ€Mediated Native Chemical Ligation on Aspartic Acid: Application towards <i>N</i> â€Glycopeptide Synthesis. Angewandte Chemie, 2016, 128, 10519-10523.	2.0	4
84	Oneâ€Pot Cascade Transformation of Glucal into Structurally Diverse Drugâ€Like Scaffolds. Chemistry - an Asian Journal, 2019, 14, 4024-4030.	3.3	4
85	The versatility of carbohydrates in antimicrobial applications. Journal of the Chinese Chemical Society, 2020, 67, 2204-2207.	1.4	3
86	Antimicrobial Carbohydrate-Based Macromolecules: Their Structures and Activities. Journal of Organic Chemistry, 2020, 85, 15827-15836.	3.2	2