Abdul Majid Wazwaz

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6379589/publications.pdf
Version: 2024-02-01

Forward scattering for non-linear wave propagation in (3+1)-dimensional Jimbo-Miwa equation using
2 singular manifold and group transformation methods. Waves in Random and Complex Media, 2022, 32,
1.6

20 663-675.
3 Lie symmetry analysis and soliton solutions for complex short pulse equation. Waves in Random and Complex Media, 2022, 32, 968-979.
1.6

Simulation of the eigenvalue problem for tapered rotating beams by the modified decomposition 4 method. International Journal for Computational Methods in Engineering Science and Mechanics, 1.4 2022, 23, 20-28.
$5 \quad$ New (3+1)-dimensional integrable fourth-order nonlinear equation: lumps and multiple soliton solutions. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1664-1673.
1.6

Lie symmetry analysis of a stochastic gene evolution in double-chain deoxyribonucleic acid system.
Waves in Random and Complex Media, 2022, 32, 2903-2917.

SOLITARY AND LUMP WAVES INTERACTION IN VARIABLE-COEFFICIENT NONLINEAR EVOLUTION EQUATION BY

7 A MODIFIED ANSÃ,,TZ WITH VARIABLE COEFFICIENTS. Journal of Applied Analysis and Computation, 2022,

8 Lump molecules in fluid systems: Kadomtsev-Petviashvili I case. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 424, 127848.
9 On the modified Gardner type equation and its time fractional form. Chaos, Solitons and Fractals, 2022, 155, 111694.
21. A new recursive scheme for solving a fractional differential equation of ray tracing through the
.
Analytical and numerical treatment to the $(2+1)$-dimensional Date-Jimbo-Kashiwara-Miwa equation.
Nonlinear Engineering, 2021, 10, 187-200.
1.4

Nonlinear Engineering, 2021, 10, 187-200.

The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral Equation with Discontinuous Kernels Using the CESTAC Method. Mathematics, 2021, 9, 260.
1.1

37

Perturbation, symmetry analysis, BÃcklund and reciprocal transformation for the extended
Boussinesq equation in fluid mechanics. Communications in Theoretical Physics, 2021, 73, 045003.
1.1

Lie symmetry analysis for complex soliton solutions of coupled complex short pulse equation.
1.2

16
Mathematical Methods in the Applied Sciences, 2021, 44, 5238-5250.

Soliton solutions through optical fibers for quadraticâ€"cubic nonlinear medium: A complex ansÃtze
approach. Optik, 2021, 229, 166268.
1.4

13

New extended Kadomtsevâ€"Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dynamics, 2021, 104, 1581-1594.

Two new PainlevÃ© integrable KdVâ€"Calogeroâ€"Bogoyavlenskiiâ€"Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation. Nonlinear Dynamics, 2021, 104, 4311-4315.
2.7

22
41 negative-order KdV-CBS equation. Nonlinear Dynamics, 2021, 104, 4311-4315.

Two (3+1)-dimensional Schrã̃dinger equations with cubicâ€"quinticâ€"septic nonlinearities: Bright and dark optical solitons. Optik, 2021, 235, 166646.
1.4

Conformable space-time fractional nonlinear (<mml:math) Tj ETQq0 00 rgBT/Overlock 10 Tf 50482 Td (xmlns:mml="http:||www.w3.or

SchrÃๆdinger-type models and their traveling wave solutions. Chaos, Solitons and Fractals, 2021, 150, 111187.

New \$\$(3+1)\$\$-dimensional PainlevÃ© integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dynamics, 2021, 106, 891-897.
$2.7 \quad 65$

Bright and dark optical solitons for a new (3+1)-dimensional nonlinear SchrÃ厅dinger equation. Optik,
1.4

38

A variety of bright and dark optical soliton solutions of an extended higher-order Sasaâ€"Satsuma
1.4

11
equation. Optik, 2021, 247, 167938.

Exponential time differencing method for modeling the dissipative rouge waves and breathers in a
1.2

13
collisional plasma. European Physical Journal Plus, 2021, 136, 1.

Protracted study on a real physical phenomenon generated by media inhomogeneities. Results in
2.0

25
Physics, 2021, 31, 104933.

Adomian decomposition method for modelling the dissipative higher-order rogue waves in a
superthermal collisional plasma. Journal of Taibah University for Science, 2021, 15, 971-983.
1.1

20

Two new PainlevÃ ©-integrable extended Sakovich equations with (2 â $€ \%+\hat{a} € \%$ ol) and (3 â $€ \%+a \hat{a} € \%$. 1) dimensions.
International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 1379-1387.

PainlevÃ® analysis for three integrable shallow water waves equations with time-dependent
coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 996-1008.

New extended rational trigonometric methods and applications. Waves in Random and Complex Media, 2020, 30, 5-26.

Bright, dark and Gaussons optical solutions for fourth-order SchrÃ $\boldsymbol{\text { dinger equations with }}$
cubicâ€"quintic and logarithmic nonlinearities. Optik, 2020, 202, 163564.
1.4

```
63 Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the ( \(2+1\) )-D
Calogeroâ€"Bogoyavlenskiiâ \(€\) "Schiff equation. Heliyon, 2020, 6, e03701.
```

Lie symmetry analysis, exact analytical solutions and dynamics of solitons for $(2+1)$-dimensional NNV equations. Physica Scripta, 2020, 95, 095204.
1.2

86
Simulation of large deflections of a flexible cantilever beam fabricated from functionally graded
65 materials by the Adomian decomposition method. International Journal of Dynamical Systems and
0.2 Differential Equations, 2020, 10, 287.

Higher dimensional nonlinear SchrÃๆdinger equations in anomalous dispersion and normal dispersive
regimes: Bright and dark optical solitons. Optik, 2020, 222, 165327 .
1.4

27

New $\left(3 \hat{\left.€^{-}+a ̂ €^{-} 1\right) \text {-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent }}\right.$ coefficients: PainlevÃ© integrability. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126787.

68 New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. European Physical Journal Plus, 2020, 135, 1.
1.286

> On short-range pulse propagation described by $(2+1)$-dimensional SchrÃ τ dinger's hyperbolic equation
> in nonlinear optical fibers. Physica Scripta, $2020,95,075203$.
1.2

New integrable $(2+1)$-dimensional sine-Gordon equations with constant and time-dependent
coefficients: Multiple optical kink wave solutions. Optik, 2020, 216, 164640.
1.4

16

PainlevÃ© analysis for Boitiâ€"Leonâ€"Mannaâ€"Pempinelli equation of higher dimensions with
76 time-dependent coefficients: Multiple soliton solutions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126310.

77	Two new PainlevÃ@-integrable $(2+1)$ and $(3+1)$-dimensional $K d V$ equations with constant and time-dependent coefficients. Nuclear Physics B, 2020, 954, 115009.	0.9	52
78	Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations. Applied Mathematics Letters, 2019, 88, 1-7.	1.5	42
79	Families of semi-rational solutions to the Kadomtsevâ $E^{\text {" }}$ Petviashvili I equation. Communications in Nonlinear Science and Numerical Simulation, 2019, 67, 480-491.	1.7	40
80	Group invariant solutions of (2+1)-dimensional rdDym equation using optimal system of Lie subalgebra. Physica Scripta, 2019, 94, 115202.	1.2	18
81	Bright and dark optical solitons for ($2+1$)-dimensional SchrÃqdinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes. Optik, 2019, 192, 162948.	1.4	65
82	A variety of optical solitons for nonlinear SchrÃ $\boldsymbol{\mathcal { T }}$ dinger equation with detuning term by the variational iteration method. Optik, 2019, 196, 163169.	1.4	31
83	Integrability aspects and localized wave solutions for a new \$\$mathbf (4+1) \$\$-dimensional Boitiấ"Leonâ€"Mannaâ€"Pempinelli equation. Nonlinear Dynamics, 2019, 98, 1379-1390.	2.7	44
84	The integrable time-dependent sine-Gordon equation with multiple optical kink solutions. Optik, 2019 182, 605-610.	1.4	40
85	A general bilinear form to generate different wave structures of solitons for a $(3+1)$ â€dimensional Boitiâ€Łeonâ€Mannaâ€Pempinelli equation. Mathematical Methods in the Applied Sciences, 2019, 42,6		119

Two integrable third-order and fifth-order KdV equations with time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2093-2102.

91 Characteristics of integrability, bidirectional solitons and localized solutions for a ($\$ \$ 3+1 \$ \$ 3+1$) Tj ETQq1 10.784 .714 rgBT ${ }_{44}$ Overlo

Transformation of soliton states for a (2+1) dimensional fourth-order nonlinear SchrÃ $\boldsymbol{\tau}$ dinger
equation in the Heisenberg ferromagnetic spin chain. Laser Physics, 2019, 29, 035401.
High-order breathers, lumps, and semi-rational solutions to the $(2+1)$-dimensional
Hirotaấ $€^{\prime \prime}$ Satsumaấ "Ito equation. Physica Scripta, 2019, $94,075203$.

PainlevÃ© analysis for new (3 â $€ \%$ o+â€\%o1)-dimensional Boitiâ €"Leonâ€"Mannaâ€"Pempinelli equations with constant

94 | and time-dependent coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, |
| :--- |
| $2019,30,4259-4266$. |

An extended time-dependent KdV6 equation. International Journal of Numerical Methods for Heat and
Fluid Flow, 2019, 29, 4205-4212.

96 New integrable Vakhnenkoâ€"Parkes (VP) equations with time-dependent coefficients. International
Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4598-4606.
$1.6 \quad 6$

97	Construction of a hierarchy of negativeâ€order integrable Burgers equations of higher orders. Mathematical Methods in the Applied Sciences, 2019, 42, 1553-1560.	1.2	1
98	A variety of nonautonomous complex wave solutions for the ($2+1$)-dimensional nonlinear SchrÃๆdinger equation with variable coefficients in nonlinear optical fibers. Optik, 2019, 180, 917-923.	1.4	89
99	Group invariant solutions of $(3+1)$-dimensional generalized B-type Kadomstsev Petviashvili equation using optimal system of Lie subalgebra. Physica Scripta, 2019, 94, 065204.	1.2	41

109	Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium. Computers and Mathematics With Applications, 2018, 76, 276-283.	1.4	63
110	Interaction of lumps and dark solitons in the Melâ€ ${ }^{\text {TM }}$ nikov equation. Nonlinear Dynamics, 2018, 92, 2049-2059.	2.7	36
111	Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation: Multiple kink solutions. AEJ - Alexandria Engineering Journal, 2018, 57, 1971-1976.	3.4	34
112	A new integrable equation combining the modified $K d V$ equation with the negative-order modified $K d V$ equation: multiple soliton solutions and a variety of solitonic solutions. Waves in Random and Complex Media, 2018, 28, 533-543.	1.6	15
113	A new integrable equation that combines the $K d V$ equation with the negativeâ€order KdV equation. Mathematical Methods in the Applied Sciences, 2018, 41, 80-87.	1.2	17
114	PainlevÃ© analysis for a new integrable equation combining the modified Calogeroâ€"Bogoyavlenskiiâ€"Schiff (MCBS) equation with its negative-order form. Nonlinear Dynamics, 2018, 91, 877-883.	2.7	55
115	An efficient algorithm to construct multi-soliton rational solutions of the $(2+1)$-dimensional KdV equation with variable coefficients. Applied Mathematics and Computation, 2018, 321, 282-289.	1.4	107
116	The successive differentiation computer-assisted method for solving well-known scientific and engineering models. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2862-2873.	1.6	1
117	Comment on â€œSoliton solutions and chaotic motion of the extended Zakharov-Kuznetsov equations in a magnetized two-ion-temperature dusty plasmaâ€•[Phys. Plasmas 21, 073709 (2014)]. Physics of Plasmas, 2018, 25, .	0.7	1

Closed form traveling wave solutions of non-linear fractional evolution equations through the
modified simple equation method. Thermal Science, 2018, 22, 341-352.

Multiple soliton solutions and other exact solutions for a twoâ€mode KdV equation. Mathematical Methods in the Applied Sciences, 2017, 40, 2277-2283.

Higher order numeric solutions of the Laneâ€"Emden-type equations derived from the multi-stage
129 modified Adomian decomposition method. International Journal of Computer Mathematics, 2017, 94, $1.0 \quad 26$ 197-215.

A numerical approach for a class of astrophysics equations using piecewise spectral-variational
130 iteration method. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 358-378.

131	New ($3 \$ \$$ varvec $\{+\} \$ \$+1$)-dimensional equations of Burgers type and Sharmâ̂́"Tassoấ"Olver type: multiple-soliton solutions. Nonlinear Dynamics, 2017, 87, 2457-2461.	2.7	73
132	Combined optical solitary waves of the Fokasâ€"Lenells equation. Waves in Random and Complex Media, 2017, 27, 587-593.	1.6	85
133	A study on a twoâ€wave mode Kadomtsevâ€"Petviashvili equation: conditions for multiple soliton solutions to exist. Mathematical Methods in the Applied Sciences, 2017, 40, 4128-4133.	1.2	42
134	Dual solutions for nonlinear boundary value problems by the variational iteration method. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 210-220.	1.6	13
135	A two-mode modified KdV equation with multiple soliton solutions. Applied Mathematics Letters, 2017, 70, 1-6.	1.5	65

Solving the $\$ \$$ mathbf $\{(3+1)\} \$ \$(3+1)$-dimensional KPâ€"Boussinesq and BKPâ€"Boussinesq equations by the simplified Hirotaâ ϵ^{TM} s method. Nonlinear Dynamics, 2017, 88, 3017-3021.

137 Three-dimensional modulational instability of the electrostatic waves in eấ "pấ ""i i magnetoplasmas having superthermal particles. Physics of Plasmas, 2017, 24, 022126.

Negative-Order KdV and Negative-Order KP Equations: Multiple Soliton Solutions. Proceedings of the
138 National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 291-296.
0.8

12

On the nonlinear dynamics of breathers waves in electronegative plasmas with Maxwellian negative
0.7
ions. Physics of Plasmas, 2017, 24, .

A Two-Mode Burgers Equation of Weak Shock Waves in a Fluid: Multiple Kink Solutions and Other
Exact Solutions. International Journal of Applied and Computational Mathematics, 2017, 3, 3977-3985.

Negative-order KdV equations in $(3+1)$ dimensions by using the $K d V$ recursion operator. Waves in
Random and Complex Media, 2017, 27, 768-778.

Abundant solutions of various physical features for the ($2+1$)-dimensional modified
KdV-Calogeroâ€"Bogoyavlenskiiâ €"Schiff equation. Nonlinear Dynamics, 2017, 89, 1727-1732.
2.7

70

Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Frontiers of Information Technology and Electronic Engineering, 2017, 18, 464-484.
1.5 44

```
145 Some applications of the (Gâ€2/G,1/G)-expansion method to find new exact solutions of NLEEs. European
    Physical Journal Plus, 2017, 132, 1.

On the super freak waves in multicomponent plasmas having two-negative ions: Xe +Ââa’ÂF â^’Ââ’ÂSF 6 â^’ and \(\operatorname{Ar}\) +Ââ^’ÂFâ^'Ââ’'SF 6 â^’ plasmas. Indian Journal of Physics, 2017, 91, 939-946.Numerical Investigation of the Beam-Type Nano-electrostatic Actuator Model by Using the Birkhoff149 Interpolation Method. International Journal of Applied and Computational Mathematics, 2017, 3,
151 Exact Soliton and Kink Solutions for New (3+1)-Dimensional Nonlinear Modified Equations of WavePropagation. Open Engineering, 2017, 7, 169-174.
0.7 ..... 63Closed form solutions of complex wave equations via the modified simple equation method. Cogent
153 Unsteady Rheology of MHD Newtonian Material with Soret and Dufours Effects. International0.9
Multiple and exact soliton solutions of the perturbed Kortewegâ€"de Vries equation of long surface 154 waves in a convective fluid via PainlevÃ® analysis, factorization, and simplest equation methods. ..... 0.8 ..... 15 Physical Review E, 2017, 95, 062211.
155 The variational iteration method for solving systems of t
Journal of Mathematical Chemistry, 2017, 55, 799-817. 0.7 ..... 122.7Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist.Nonlinear Dynamics, 2017, 87, 1685-1691.
82
2.7 ..... 13Some new integrable systems of two-component fifth-order equations. Nonlinear Dynamics, 2017, 87,
1111-1120.1.613
A new trial equation method for finding exact chirped soliton solutions of the quintic derivative158 nonlinear SchrÃ̃dinger equation with variable coefficients. Waves in Random and Complex Media,1.6
2017, 27, 153-162.
Multiple-soliton solutions for extended <mml:math
\(159 \begin{aligned} & \text { xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="sil.gif" display="inline" } \\ & \text { overflow="scroll"> <mml:mrow> <mml:mo> (</mml:mo > <mml:mn>3</mml:mn> <mml:m }\end{aligned}\) limboâ \(€^{\prime \prime}\) Miwa eouations. Anplied Mathematics Letters. 2017. 64. 21-26.
A New Integrable Equation Constructed via Combining the Recursion Operator of the
160 Calogero-BogoyavlenskiiSchiff (CBS) Equation and its Inverse Operator. Applied Mathematics andInformation Sciences, 2017, 11, 1241-1246.
0.2 ..... 16
A variety of soliton solutions for the Boussinesq-Burgers equation and the higher-order 161 Boussinesq-Burgers equation. Filomat, 2017, 31, 831-840.BoussinesqBur
163
164

New \((3+1)\) â€dimensional nonlinear equations with \(K d V\) equation constituting its main part: multiple
soliton solutions. Mathematical Methods in the Applied Sciences, 2016, 39, 886-891.
1.2

23

ON SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR FOURTH-ORDER BEAM EQUATIONS. Mathematical Modelling and Analysis, 2016, 21, 304-318.
\(0.7 \quad 8\)
165 New solitons and periodic wave solutions for the \((2+1)\)-dimensional Heisenberg ferromagnetic sp
\(1.0 \quad 72\)
chain equation. Journal of Electromagnetic Waves and Applications, 2016, 30, 788-794.

Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dynamics, 2016, 85, 731-737.
2.7

80

167 Dual solutions for nonlinear boundary value problems by the Adomian decomposition method.
1.6

International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2393-2409.

Breaking soliton equations and negative-order breaking soliton equations of typical and higher orders. Pramana - Journal of Physics, 2016, 87, 1.
0.9

14
168

The simplified Hirotaâ \(€^{T M}\) S method for studying three extended higher-order KdV-type equations. Journal of Ocean Engineering and Science, 2016, 1, 181-185.
1.7

47
169

A new numerical approach to solve Thomasâ€"Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. SpringerPlus, 2016, 5, 1400.

171 Gaussian soliton solutions to a variety of nonlinear logarithmic SchrÃ \(\operatorname{ta}\) dinger equation. Journal of Electromagnetic Waves and Applications, 2016, 30, 1909-1917.

Numerical solutions of fourth-order Volterra integro-differential equations by the Greenâ \(\epsilon^{\mathrm{TM}}\) s function
172 and decomposition method. Mathematical Sciences, 2016, 10, 159-166.
\(1.0 \quad 6\)

173 A seventh-order member of KdV6 hierarchy and its (2+1)-dimensional extensions. Modern Physics Letters B, 2016, 30, 1650198.
\(1.0 \quad 4\)

An extended modified KdV equation and its PainlevÃ© integrability. Nonlinear Dynamics, 2016, 86,
1455-1460.
2.7

37

175 Gaussons. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1699-1709.
1.6

19

176 A New Integrable (2+1)-Dimensional Generalized Breaking Soliton Equation: N-Soliton Solutions and
1.1 Traveling Wave Solutions. Communications in Theoretical Physics, 2016, 66, 385-388.

New bilinearization, BÃcklund transformation and infinite conservation laws for the KdV6 equation with Bell polynomials. Mathematical Methods in the Applied Sciences, 2016, 39, 2716-2721.
1.2

10

Integrable couplings of the generalized Vakhnenko equation: multiple soliton solutions. JVC/Journal
1.5

13
of Vibration and Control, 2016, 22, 915-919.

Solving Systems of Fourth-Order Emdenâ \(€^{\prime \prime} F o w l e r ~ T y p e ~ E q u a t i o n s ~ b y ~ t h e ~ V a r i a t i o n a l ~ I t e r a t i o n ~ M e t h o d . ~\)
Chemical Engineering Communications, 2016, 203, 1081-1092.
1.5

9
181
An algorithm based on the variational iteration technique for the Bratu-type and the Laneấ"emden problems. Journal of Mathematical Chemistry, 2016, 54, 527-551.
0.7

55

Trial equation method for solving the generalized Fisher equation with variable coefficients. Physics
0.9

24
182 Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1260-1262.
183 Two reliable methods for solving the Volterra integral equation with a weakly singular kernel.
Journal of Computational and Applied Mathematics, 2016, 302, 71-80.
Multiple kink solutions for two coupled integrable (<mml:math) Tj ETQq0 00 rgBT /Overlock 10 Tf 50632 Td (xmlns:mml="http:/|www
184 systems. Applied Mathematics Letters, 2016, 58, 1-6.
185 A modified homotopy perturbation method for singular time dependent Emdenấ"Fowler equations

186 A new (3+1)-dimensional generalized Kadomtsevâ€"Petviashvili equation. Nonlinear Dynamics, 2016, 84, 1107-1112.
\(2.7 \quad 96\)
Gaussian solitary waves for the logarithmic-BBM and the logarithmic-TRLW equations. Journal of
Mathematical Chemistry, 2016, 54, 252-268.

188 A new integrable ( \(\$ \$ 3+1 \$ \$ 3+1\) )-dimensional \(K d V\)-like model with its multiple-soliton solutions. Nonlinear Dynamics, 2016, 83, 1529-1534.
\(2.7 \quad 93\)

Kadomtsevấ"Petviashvili hierarchy: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
\(189 \begin{aligned} & \text { altimg="si1.gif" display="inline" overflow="scroll" }><\mathrm{mml}: \mathrm{mi}>\mathrm{N}</ \mathrm{mml} \text { :mi }></ \mathrm{mml} \text { :math }>\text {-soliton }\end{aligned} \quad 1.5\)
190 Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dynamics, 2016, 83, 591-596.
2.7

91
191 \begin{tabular}{l} 
An efficient semi-numerical technique for solving nonlinear singular boundary value problems \\
arising in various physical models. International Journal of Computer Mathematics, 2016, 93, 1330-1346.
\end{tabular}

192 Negativeâ€order modified KdV equations: multiple soliton and multiple singular soliton solutions.
\(1.2 \quad 31\)
Mathematical Methods in the Applied Sciences, 2016, 39, 661-667.
1.2

31

193 New solutions for two integrable cases of a generalized fifth-order nonlinear equation. Modern
\(1.0 \quad 13\)
Physics Letters B, 2015, 29, 1550065.

Solitons collision and freak waves in a plasma with Cairns-Tsallis particle distributions. Plasma
0.9

Physics and Controlled Fusion, 2015, 57, 125012.
\(0.9 \quad 38\)

Nature-inspired computing approach for solving non-linear singular Emdenâ€"Fowler problem arising
1.8

96
195 in electromagnetic theory. Connection Science, 2015, 27, 377-396.

The generalized KaupßBoussinesq equation: multiple soliton solutions. Waves in Random and Complex
Media, 2015, 25, 473-481.
1.6

24

New approximate solutions of the Blasius equation. International Journal of Numerical Methods for
Heat and Fluid Flow, 2015, 25, 1590-1599.
1.6

7

Solving New Fourthâ€"Order Emdenâ€"Fowler-Type Equations by the Adomian Decomposition Method.
The variational iteration method for solving the Volterra integro-differential forms of the
199 Lane-Emden and the Emden-Fowler problems with initial and boundary value conditions. Open

    Engineering, 2015, 5, .
200 A KdV6 hierarchy: Integrable members with distinct dispersion relations. Applied Mathematics Letters,1.52015, 45, 86-92.
1.5 ..... 11
The Variational Iteration Method for Solving New Fourth-Order Emdenấ \({ }^{\text {"F Fowler Type Equations. }}\) 201 Chemical Engineering Communications, 2015, 202, 1425-1437.
1.5 ..... 21
On the Solution of Non-Isothermal Reaction-Diffusion Model Equations in a Spherical Catalyst by the 202 Modified Adomian Method. Chemical Engineering Communications, 2015, 202, 1081-1088.
0.7 ..... 32203 Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the
Adomian decomposition method. Journal of Mathematical Chemistry, 2015, 53, 1054-1067.1.2
204 Peakon and solitonic solutions for KdV-like equations. Physica Scripta, 2015, 90, 045203.
205 On the Adomian decomposition method for solving the Stefan problem. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 912-928. ..... 1.6 ..... 18
206 New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part:Multiple soliton solutions. Chaos, Solitons and Fractals, 2015, 76, 93-97.2.5
207 An efficient approach for solving second-order nonlinear differential equation with Neumann0.7
207 boundary conditions. Journal of Mathematical Chemistry, 2015, 53, 767-790.
Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized208 Gaussian solitary waves for the logarithmic Boussinesq equation
Boussinesq equation. Ocean Engineering, 2015, 94, 111-115.
1.9 ..... 3727496
209 A variety of \((3+1)\) â€dimensional Burgers equations derived by using the Burgers recursion operator. Mathematical Methods in the Applied Sciences, 2015, 38, 2642-2649.
1.2 ..... 3
210 The Volterra integral form of the Laneâ€"Emden equation: new derivations and solution by the Adomian1.211
decomposition method. Journal of Applied Mathematics and Computing, 2015, 47, 365-379.0\((3+1)\)-Dimensional Nonlinear Equations and Couplings of Fifth-Order Equations in the Solitary Waves
211 Theory: Multiple Soliton Solutions. , 2015, , 1-46.A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics.1.56
International Journal of Biomathematics, 2014, 07, 1450020.0.7
\begin{tabular}{|c|c|c|c|}
\hline 217 & The variational iteration method for solving the Volterra integro-differential forms of the Laneấ"Emden equations of the first and the second kind. Journal of Mathematical Chemistry, 2014, 52, 613-626. & 0.7 & 18 \\
\hline 218 & Solving coupled Laneâ€"Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. Journal of Mathematical Chemistry, 2014, 52, 255-267. & 0.7 & 95 \\
\hline 219 & The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients. Open Engineering, 2014, 4, . & 0.7 & 20 \\
\hline 220 & A variational approach for a class of nonlocal elliptic boundary value problems. Journal of Mathematical Chemistry, 2014, 52, 1324-1337. & 0.7 & 7 \\
\hline 221 & A variety of \((3+1)\)-dimensional \(m K d V\) equations derived by using the \(m K d V\) recursion operator. Computers and Fluids, 2014, 93, 41-45. & 1.3 & 12 \\
\hline 222 & New (3+1)-dimensional nonlinear evolution equation: multiple soliton solutions. Open Engineering, 2014, 4, . & 0.7 & 7 \\
\hline 223 & Kinks and travelling wave solutions for Burgers-like equations. Applied Mathematics Letters, 2014, 38, 174-179. & 1.5 & 16 \\
\hline 224 & Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations. Physica Scripta, 2014, 89, 095206. & 1.2 & 29 \\
\hline 225 & A coupled Ramani equation: multiple soliton solutions. Journal of Mathematical Chemistry, 2014, 52, 2133-2140. & 0.7 & 5 \\
\hline 226 & <i>N</i>-soliton solutions for the integrable modified KdV-sine-Gordon equation. Physica Scripta, 2014, 89, 065805. & 1.2 & 13 \\
\hline 227 & and a (<mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline") & & \(1 \frac{1}{4}\) \\
\hline
\end{tabular}

Soliton-like solutions to the generalized Burgers-Huxley equation with variable coefficients. Open
Engineering, 2013, 3, .

Nonsingular complexiton solutions for two higher-dimensional fifth-order nonlinear integrable equations. Physica Scripta, 2013, 88, 025001.
1.2

On soliton solutions for the Fitzhughâ€"Nagumo equation with time-dependent coefficients. Applied Mathematical Modelling, 2013, 37, 3821-3828.

Multiple soliton solutions for the integrable couplings of the KdV and the KP equations. Open
Physics, 2013, 11, .

Two B-type Kadomtsevâ \(€^{" P}\) Petviashvili equations of \((2+1)\) and \((3+1)\) dimensions: Multiple soliton solutions, rational solutions and periodic solutions. Computers and Fluids, 2013, 86, 357-362.
1.3

Envelope solitons for generalized forms of the phi-four equation. Journal of King Saud University -
Science, 2013, 25, 129-133.
1.6

Solving nonlocal initial-boundary value problems for the Lotkaâ€"von Foerster model. Applied
241 Mathematics and Computation, 2013, 225, 7-15.
1.4

The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations. Open Engineering, 2013, 3, .

243 Multiple soliton solutions for an integrable couplings of the Boussinesq equation. Ocean
Engineering, 2013, 73, 38-40.

An eighth-order KdV-type equation in \((1+1)\) and \((2+1)\) dimensions: multiple soliton solutions. Open
Physics, 2013, 11, .

Adomian decomposition method for solving the Volterra integral form of the Laneâ \(€\) "Emden equations
245 with initial values and boundary conditions. Applied Mathematics and Computation, 2013, 219,
1.4 5004-5019.

Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified
246 Adomian decomposition method for nonlinear boundary value problems. International Journal of
1.4 Non-Linear Mechanics, 2013, 49, 159-169.
A variational approach to a BVP arising in the modelling of electrically conducting solids. OpenEngineering, 2013, 3, 106-112.
\(0.7 \quad 4\)

A new modified Adomian decomposition method and its multistage form for solving nonlinear
248 boundary value problems with Robin boundary conditions. Applied Mathematical Modelling, 2013, 37,
2.2

8687-8708.
\[
\begin{aligned}
& 249 \text { A reliable iterative method for solving the time-dependent singular Emden-Fowler equations. Open } \\
& \text { Engineering, 2013,3,. } \\
& 250 \text { Multiple soliton solutions for the Whithamâ€"Broerâ€"Kaup model in the shallow water small-amplitude } \\
& \text { regime. Physica Scripta, 2013, 88, 035007. }
\end{aligned}
\]
\(0.7 \quad 3\)
253

A modified KdV-type equation that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons. Physica Scripta, 2012, 86, 045501.

Two forms of \((3+1)\)-dimensional B-type Kadomtsevâ€"Petviashvili equation: multiple soliton solutions. Physica Scripta, 2012, 86, 035007.

Solitary waves solutions for extended forms of quantum Zakharovâ€ "Kuznetsov equations. Physica \(^{\text {K }}\) Scripta, 2012, 85, 025006.

Adomian Decomposition Method Applied to Non-linear Evolution Equations in Soliton Theory. , 2012, ,
1-12.
MULTIPLE SOLITON SOLUTIONS FOR THREE SYSTEMS OF BROERâ€"KAUPâ€"KUPERSHMIDT EQUATIONS
257 DESCRIBING NONLINEAR AND DISPERSIVE LONG GRAVITY WAVES. Modern Physics Letters B, 2012, 26, 1250126.

258 Structures of multiple soliton solutions of the generalized, asymmetric and modified Nizhnikâ€"Novikovâ€"Veselov equations. Applied Mathematics and Computation, 2012, 218, 11344-11349.
1.4
xmlns:xocs="http:||www.elsevier.com/xml/xocs/dtd" xmlns:xs="http:|/www.w3.org/2001/XMLSchema"
\(259 \begin{aligned} & \text { xmlns:xsi="http: } / / w w w . w 3 . o r g / 2001 / X M L S c h e m a-i n s t a n c e " ~ x m l n s=" h t t p: / / w w w . e l s e v i e r . c o m / x m l / j a / d t d " ~\end{aligned}\)
xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"
\(1.5 \quad 14\) xmlns:tb="httto:/lwww.elsevier.com/xm//common/table/dtd"

260 Multiple soliton solutions for some (3+1)-dimensional nonlinear models generated by the Jaulentâ€"Miodek hierarchy. Applied Mathematics Letters, 2012, 25, 1936-1940.

261 One and two soliton solutions for the sinhấ "Gordon equation in \((1+1),(2+1)\) and \((3+1)\) dimensions.
261 Applied Mathematics Letters, 2012, 25, 2354-2358.

Bright and dark soliton solutions for a new fifth-order nonlinear integrable equation with perturbation terms. Journal of King Saud University - Science, 2012, 24, 295-299.

\(1.2 \quad 12\)
(2+1)-Dimensional mKdV \((\mathrm{N})\) equations by the \(m K d V\) recursion operator: Multiple soliton and multiple singular soliton solutions. Applied Mathematics and Computation, 2012, 219, 2535-2544.

Abundant soliton and periodic wave solutions for the coupled Higgs field equation, the Maccari system and the Hirotaâ€"Maccari system. Physica Scripta, 2012, 85, 065011.

A reliable study for extensions of the Bratu problem with boundary conditions. Mathematical Methods in the Applied Sciences, 2012, 35, 845-856.

Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Communications in
Nonlinear Science and Numerical Simulation, 2012, 17, 491-495.

A study on two extensions of the Bogoyavlenskiiấ \({ }^{\text {"Schieff equation. Communications in Nonlinear }}\) Science and Numerical Simulation, 2012, 17, 1500-1505.

Soliton solutions for two \((3+1)\)-dimensional non-integrable KdV-type equations. Mathematical and
Computer Modelling, 2012, 55, 1845-1848.

Solitons and singular solitons for a variety of Boussinesq-like equations. Ocean Engineering, 2012, 53, 1-5.
271 One and two soliton solutions for seventh-order Caudrey-Dodd-Gibbon and Caudrey-Dodd-Gibbon-KP equations. Open Physics, 2012, 10, .

One Kink Solution for a Variety of Nonlinear Fifth-order Equations. Discontinuity, Nonlinearity, and277 Extended KP equations and extended system of KP equations: multiple-soliton solutions. Canadian
\[
\begin{aligned}
& \text { A new }(2+1) \text {-dimensional Kortewegâ€"de Vries equation and its extension to a new (3+1)-dimensional } \\
& \text { Kadomtsevâ€"Petviashvili equation. Physica Scripta, 2011, 84, 035010. }
\end{aligned}
\]
289 Integrability of coupled KdV equations. Open Physics, 2011, 9, . 0.8 ..... 13
290 Multi-front waves for extended form of modified Kadomtsev-Petviashvili equation. Applied ..... 1.9 ..... 42
Mathematics and Mechanics (English Edition), 2011, 32, 875-880.
\(1.4 \quad 23\)291 N-soliton solutions for shallow water waves equations in \((1+1)\) and \((2+1)\) dimensions. Applied1.423Mathematics and Computation, 2011, 217, 8840-8845.
Multiple soliton solutions for \((2+1)\)-dimensional Sawada-Kotera and Caudrey-Dodd-Cibbon equations.Mathematical Methods in the Applied Sciences, 2011, 34, 1580-1586.\(1.2 \quad 47\)
Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients.Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1122-1126.1.735
295 Comment on â€œA note on a study on an integrable system of coupled KdV equationsâ€: Communications
in Nonlinear Science and Numerical Simulation, 2011, 16, 2200-2201.
The variational iteration method for solving nonlinear singular boundary value problems arising in296 various physical models. Communications in Nonlinear Science and Numerical Simulation, 2011, 16,1.7803881-3886.
297 Dark solitons for a combined potential KdV and Schwarzian KdV equations with t-dependent1.425
coefficients and forcing term. Applied Mathematics and Computation, 2011, 217, 8846-8851.
A one-soliton solution of the equation with generalized evolution a
Nonlinear Analysis: Real World Applications, 2011, 12, 2822-2825.
0.917
300 Multiple soliton solutions for a new coupled Ramani equation. Physica Scripta, 2011, 83, 015002.1.210
New higher-dimensional fifth-order nonlinear equations with multiple soliton solutions. Physica 1.2 ..... 9
301 Scripta, 2011, 84, 025007.338
302 Linear and Nonlinear Integral Equations. , 2011, , .
303 The variational iteration method for solving systems of equations of Emdenâ \(€^{\text {c" }}\) Fowler type. 1.0 ..... 23
International Journal of Computer Mathematics, 2011, 88, 3406-3415. ..... 1.0Modern Physics Letters B, 2011, 25, 643-648.
The \((2+1)\) and (3+1)-Dimensional CBS Equations: Multiple Soliton Solutions and Multiple Singular
Soliton Solutions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65,
\(173-181\). \begin{tabular}{l} 
N-soliton solutions for the integrable bidirectional sixth-order Sawadaâ€"Kotera equation. Applied \\
Mathematics and Computation, 2010, \(216,2317-2320\).
\end{tabular}
329 Soliton solutions of the KdV equation with higher-order corrections. Physica Scripta, 2010, 82,
045005 .331 <i>N</i>-soliton solutions for the Vakhnenko equation and its generalized forms. Physica Scripta,
2010, 82, 065006.1.242Soliton solution for an inhomogeneous highly dispersive media with a dual-power nonlinearity law.International Journal of Computer Mathematics, 2010, 87, 1178-1185.Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations. Physica Scripta, 2010, 81,
333
035005.Bright solitons and multiple soliton solutions for coupled modified \(K d V\) equations with
339 wave equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 0.9 ..... 35
2927-2930.

Two systems of two-component integrable equations: Multiple soliton solutions and multiple
singular soliton solutions. Applied Mathematics and Computation, 2009, 207, 397-405.

Multiple-soliton solutions and multiple-singular soliton solutions for two higher-dimensional shallow water wave equations. Applied Mathematics and Computation, 2009, 211, 495-501.
1.4

The variational iteration method for analytic treatment for linear and nonlinear ODEs. Applied
Mathematics and Computation, 2009, 212, 120-134.

Sub-ODE method and soliton solutions for the variable-coefficient mKdV equation. Applied
Mathematics and Computation, 2009, 214, 370-373.

Four ( \(2+1\) )-dimensional integrable extensions of the \(K d V\) equation: Multiple-soliton and multiple
singular soliton solutions. Applied Mathematics and Computation, 2009, 215, 1463-1476.

A (3+1)-dimensional nonlinear evolution equation with multiple soliton solutions and multiple singular soliton solutions. Applied Mathematics and Computation, 2009, 215, 1548-1552.

Multiple-soliton solutions for coupled KdV and coupled KP systems. Canadian Journal of Physics,
2009, 87, 1227-1232.
0.4

29

350 Partial Differential Equations and Solitary Waves Theory. Nonlinear Physical Science, 2009, , .
0.2

608

351 Solitary Waves Theory. Nonlinear Physical Science, 2009, , 479-502.
0.2

13

352 Nonlinear Partial Differential Equations. Nonlinear Physical Science, 2009, , 285-351.

353 The Family of the KdV Equations. Nonlinear Physical Science, 2009, , 503-556.

354 Laplaceâ \(€^{\text {TM }}\) s Equation. Nonlinear Physical Science, 2009, , 237-284.
0.2

0

355 Family of KdV-type Equations. Nonlinear Physical Science, 2009, , 605-637.
\(0.2 \quad 2\)

356 Burgers, Fisher and Related Equations. Nonlinear Physical Science, 2009, , 665-681.
0.2

The tanh method for travelling wave solutions to the Zhiberâ \(€\) "Shabat equation and other related
equations. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 584-592.
1.7

Multiple soliton solutions and multiple singular soliton solutions for two integrable systems.
Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6879-6886.
0.9

The tanhâ \(€^{\text {"coth }}\) and the sineâ \(€^{\text {"cosine methods for kinks, solitons, and periodic solutions for the }}\)
Pochhammerâ \(€^{\prime \prime}\) Chree equations. Applied Mathematics and Computation, 2008, 195, 24-33.
1.4

Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations. Applied Mathematics and Computation, 2008, 195, 754-761.
361 New solutions of distinct physical structures to high-dimensional nonlinear evolution equations. 5
362 Multiple-soliton solutions for the fifth order Caudreyâ \(€\) "Doddâ \(€\) "Cibbon (CDG) equation. Applied
1.4
Mathematics and Computation, 2008, 197, 719-724.
31
Multiple-soliton solutions for the Lax seventh-order equation. Applied Mathematics and Computation,
\(2008,198,877-881\).
364 The Hirotaâ€ \({ }^{T M}\) s direct method and the tanhâ \(€^{\prime \prime}\) coth method for multiple-soliton solutions of the
Sawadaâ \(€\) "Koteraâ \(€\) "Ito seventh-order equation. Applied Mathematics and Computation, 2008, 199, 133-138.
1.4
121
The Hirotaâ€ \({ }^{T M}\) s bilinear method and the tanhâ \(€^{" c}\) coth method for multiple-soliton solutions of the
365 Sawadaâ \(€^{" K}\) Koteraâ \(€^{" K} K\) adomtsevâ \(€^{" P}\) Petviashvili equation. Applied Mathematics and Computation, 2008, 200,
\(160-166\).
366 Multiple-front solutions for the Burgersâ€"Kadomtsevâ€"Petviashvili equation. Applied Mathematics and Computation, 2008, 200, 437-443.
\(1.4 \quad 78\)
Multiple-soliton solutions for the Laxâ€"Kadomtsevâ€"Petviashvili (Laxâ€"KP) equation. Applied
367 Mathematics and Computation, 2008, 201, 168-174.
Mathematics and Computation, 2008, 201, 168-174.
\(1.4 \quad 66\)
368 The Hirotaâ \(\epsilon^{T M}\) s direct method for multiple-soliton solutions for three model equations of shallow water waves. Applied Mathematics and Computation, 2008, 201, 489-503.
1.4138
\(369 \begin{aligned} & \text { Multiple-soliton solutions of two extended model equations for shallow water waves. Applied } \\ & \text { Mathematics and Computation, 2008, 201, 790-799. } \\ & 370 \\ & \begin{array}{l}\text { Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirotaâ€ }{ }^{\mathrm{TM}} \text { S } \\ \text { tanhâ€"coth method and Exp-function method. Applied Mathematics and Computation, 2008, } 202\end{array} \\ & 371\end{aligned} \begin{aligned} & \text { Multiple-soliton solutions for the generalized -dimensional and the generalized -dimensional lto } \\ & \text { equations. Applied Mathematics and Computation, 2008, 202, 840-849. }\end{aligned}\)
Multiple-soliton solutions for the ninth-order KdV equation and sixth-order Boussinesq equation.
372 Applied Mathematics and Computation, 2008, 203, 277-283.
1.4

16

\(1.4 \quad 26\)
373 Mathematics and Computation, 2008, 203, 402-407.

Multiple-soliton solutions for the Calogeroâ€"Bogoyavlenskiiâ€"Schiff, Jimboâ€"Miwa and YTSF equations. Applied Mathematics and Computation, 2008, 203, 592-597.
1.4

122

Solitons and singular solitons for the Gardnerâ€"KP equation. Applied Mathematics and Computation, 2008, 204, 162-169.

The integrable KdV6 equations: Multiple soliton solutions and multiple singular soliton solutions.
380 Applied Mathematics and Computation, 2008, 204, 963-972.
1.4

40

381 New sets of solitary wave solutions to the \(K d V\), \(m K d V\), and the generalized \(K d V\) equations.
1.7

Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 331-339.
53

382 New travelling wave solutions to the Boussinesq and the Kleinâ \(€^{\prime \prime}\) Gordon equations. Communications
The extended tanh method for the Zakharovâ€"Kuznetsov (ZK) equation, the modified ZK equation, and
383 its generalized forms. Communications in Nonlinear Science and Numerical Simulation, 2008, 13,

Analytic study on the one and two spatial dimensional potential KdV equations. Chaos, Solitons and Fractals, 2008, 36, 175-181.
2.5
The extended tanh method for new compact and noncompact solutions for the KPâ€"BBM and the
ZKâ€"BBM equations. Chaos, Solitons and Fractals, 2008, 38, 1505-1516.

386 A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos, Solitons and Fractals, 2008, 37, 1136-1142.
2.5

175
```

387 Chapter 9 The KdV Equation. Handbook of Differential Equations: Evolutionary Equations, 2008, ,

``` 485-568.
389 New kinds of solitons and periodic solutions to the generalized KdV equation. Numerical Methods
 for Partial Differential Equations, 2007, 23, 247-255.
\begin{tabular}{ll}
2.0 & 7
\end{tabular}

390 The variable separated ODE method for a reliable treatment for the Liouville equation and its 390 variants. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 434-446.
\(1.7 \quad 2\)

Analytic study for fifth-order KdV-type equations with arbitrary power nonlinearities.
 overflow="scroll" \(x \mathrm{mlns}: \times \mathrm{xocs}=\) "http:||www.elsevier.com/xml|xocs/dtd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
392 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd"
\(1.1 \quad 119\)
xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"
393 Amls:sparisontidetween elsevevaricom/xml/co
of Computational and Applied Mathematics, 2007, 207, 129-136.
1.1

149

The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion
equations. Computers and Mathematics With Applications, 2007, 54, 933-939.
397
398

The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Applied Mathematics and Computation, 2007, 184, 1002-1014.
1.4

239

New solitary wave solutions to the modified forms of Degasperisấ"Procesi and Camassaấ"Holm equations. Applied Mathematics and Computation, 2007, 186, 130-141.
1.4

100
399 The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Applied
1.4 Mathematics and Computation, 2007, 187, 1131-1142.

193

400 New solitary wave and periodic wave solutions to the (2+1)-dimensional Nizhnikấ "Novikovâ€"Veselov system. Applied Mathematics and Computation, 2007, 187, 1584-1591.
1.4

27
The variational iteration method for solving two forms of Blasius equation on a half-infinite domain.
Applied Mathematics and Computation, 2007, 188, 485-491.
\(1.4 \quad 95\)

402 New solitons and kinks solutions to the Sharmaâ€"Tassoâ€"Olver equation. Applied Mathematics and Computation, 2007, 188, 1205-1213.
1.4

80
The tanhâ€"coth method for solitons and kink solutions for nonlinear parabolic equations. Applied
Mathematics and Computation, 2007, 188, 1467-1475.
404 The tanhâ€"coth method for new compactons and solitons solutions for the \(K(n, n)\) and the \(K(n+1, n+1)\)
equations. Applied Mathematics and Computation, 2007, 188, 1930-1940.
\begin{tabular}{|c|c|c|c|}
\hline 405 & Multiple-soliton solutions for the KP equation by Hirotaâ \(€^{T M} s\) bilinear method and by the tanhấ \(€^{\prime \prime}\) coth method. Applied Mathematics and Computation, 2007, 190, 633-640. & 1.4 & 237 \\
\hline 406 & Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Applied Mathematics and Computation, 2007, 190, 1198-1206. & 1.4 & 128 \\
\hline 407 & Multiple-soliton solutions for the Boussinesq equation. Applied Mathematics and Computation, 2007, 192, 479-486. & 1.4 & 150 \\
\hline
\end{tabular}

408 The variational iteration method for a reliable treatment of the linear and the nonlinear Goursat problem. Applied Mathematics and Computation, 2007, 193, 455-462.
1.4

21
409 New kinks and solitons solutions to the (2+1) -dimensional Konopelchenkoâ \(\epsilon^{\text {"D }}\) Dubrovsky equation.
\(2.0 \quad 45\) Mathematical and Computer Modelling, 2007, 45, 473-479.

New solitary wave solutions to the modified Kawahara equation. Physics Letters, Section A: General,

The tanhâ \(€\) "coth and the sech methods for exact solutions of the Jaulentâ \(€\) "Miodek equation. Physics
411 Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 85-90.

The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave
equations. Computers and Mathematics With Applications, 2007, 54, 926-932.
1.4

92

415 Analytic study on the generalized fifth-order KdV equation: New solitons and periodic solutions.
Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1172-1180.
1.7

13

The variational iteration method for exact solutions of Laplace equation. Physics Letters, Section A:
0.9

General, Atomic and Solid State Physics, 2007, 363, 260-262.
54

The sineâ \(€^{\prime \prime}\) cosine and the tanh methods: Reliable tools for analytic treatment of nonlinear dispersive
1.4
equations. Applied Mathematics and Computation, 2006, 173, 150-164.

The modified decomposition method for analytic treatment of differential equations. Applied
418 Mathematics and Computation, 2006, 173, 165-176.
1.4

131

Explicit travelling wave solutions of variants of the \(K(n, n)\) and the \(Z K(n, n)\) equations with compact
and noncompact structures. Applied Mathematics and Computation, 2006, 173, 213-230.
1.4

Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method.
Applied Mathematics and Computation, 2006, 174, 289-299.
1.4

The variable separated ODE and the tanh methods for solving the combined and the double combined
421 The variable separated ODE and the tanh methods for solving the combined and the double co
1.4

26

The modified decomposition method and PadÃ © approximants for a boundary layer equation in unbounded domain. Applied Mathematics and Computation, 2006, 177, 737-744.
\[
423 \text { Travelling wave solutions for combined and double combined sineâ } € \text { "cosine-Gordon equations by the }
\] variable separated ODE method. Applied Mathematics and Computation, 2006, 177, 755-760.

Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh
method. Applied Mathematics and Computation, 2006, 182, 283-300.
425 Solitary wave solutions and periodic solutions for higher-order nonlinear evolution equations.
Applied Mathematics and Computation, 2006, 181, 1683-1692.
A comparison study between the modified decomposition method and the traditional methods for
solving nonlinear integral equations. Applied Mathematics and Computation, 2006, 181, 1703-1712.
1.4

51
Travelling wave solutions for the MKdV-sine-Gordon and the MKdV-sinh-Gordon equations by using a
variable separated ODE method. Applied Mathematics and Computation, 2006, 181, 1713-1719.
1.4

24

Peakons, kinks, compactons and solitary patterns solutions for a family of Camassaâ€"Holm equations by using new hyperbolic schemes. Applied Mathematics and Computation, 2006, 182, 412-424.
1.4

26

Compactons and solitary wave solutions for the Boussinesq wave equation and its generalized form.
429 Applied Mathematics and Computation, 2006, 182, 529-535.

Exact travelling wave solutions to seventh-order and ninth-order KdV-like equations. Applied
Mathematics and Computation, 2006, 182, 771-780.
Exact and explicit travelling wave solutions for the nonlinear Drinfeldâ€ "Sokolov system.
Communications in Nonlinear Science and Numerical Simulation, 2006, 11, 311-325.
443 \begin{tabular}{l} 
Solitary wave solutions for modified forms of Degasperisấ"Procesi and Camassaấ "Holm equations. \\
Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 352, 500-504.
\end{tabular}
\(0.9 \quad 121\)

The variable separated ODE method for travelling wave solutions for the Boussinesq-double
446 sine-Gordon and the Boussinesq-double sinh-Gordon equations. Mathematics and Computers in
Simulation, 2006, 72, 1-9.

447 Reliable analysis for nonlinear SchrÃণdinger equations with a cubic nonlinearity and a power law

Generalized forms of the phi-four equation with compactons, solitons and periodic solutions.
Mathematics and Computers in Simulation, 2005, 69, 580-588.

Adomian decomposition method for a reliable treatment of the Emdenâ€"Fowler equation. Applied Mathematics and Computation, 2005, 161, 543-560.

Compactons, solitons and periodic solutions for variants of the KdV and the KP equations. Applied Mathematics and Computation, 2005, 161, 561-575.

Nonlinear dispersive special type of the Zakharovâ \(€^{\prime K}\) Kuznetsov equation ZK(n,n) with compact and noncompact structures. Applied Mathematics and Computation, 2005, 161, 577-590.
1.4

A class of nonlinear fourth order variant of a generalized Camassaâ \(\epsilon^{\text {"H Holm equation with compact and }}\) noncompact solutions. Applied Mathematics and Computation, 2005, 165, 485-501.
1.4

A reliable treatment of the physical structure for the nonlinear equation \(K(m, n)\). Applied Mathematics and Computation, 2005, 163, 1081-1095.

New compact and noncompact solutions for two variants of a modified Camassaâ€"Holm equation.
Applied Mathematics and Computation, 2005, 163, 1165-1179.

Analytical solution for the time-dependent Emdenâ \(€\) "Fowler type of equations by Adomian decomposition method. Applied Mathematics and Computation, 2005, 166, 638-651.

Adomian decomposition method for a reliable treatment of the Bratu-type equations. Applied Mathematics and Computation, 2005, 166, 652-663.

Generalized Boussinesq type of equations with compactons, solitons and periodic solutions. Applied Mathematics and Computation, 2005, 167, 1162-1178.

461 The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations. Applied
Mathematics and Computation, 2005, 167, 1196-1210.

The tanh and the sineâ€"cosine methods for compact and noncompact solutions of the nonlinear
462 The tanh and the sineâ \(€\) "cosine methods for compact and noncompact solutions of the no
Kleinâ \(€\) "Gordon equation. Applied Mathematics and Computation, 2005, 167, 1179-1195.
1.4

129

The tanh method for generalized forms of nonlinear heat conduction and Burgersâ€"Fisher equations.
463 Applied Mathematics and Computation, 2005, 169, 321-338.

Exact solutions of compact and noncompact structures for the KPâ€"BBM equation. Applied
1.4

Mathematics and Computation, 2005, 169, 700-712.

Compact and noncompact physical structures for the ZKâ€"BBM equation. Applied Mathematics and
Computation, 2005, 169, 713-725.

Travelling wave solutions of generalized forms of Burgers, Burgersâ€"KdV and Burgersâ€"Huxley equations. Applied Mathematics and Computation, 2005, 169, 639-656.

The tanh method for a reliable treatment of the \(K(n, n)\) and the \(K P(n, n)\) equations and its variants. Applied Mathematics and Computation, 2005, 170, 361-379.
1.4

16

Exact solutions with compact and noncompact structures for the one-dimensional generalized

The modified decomposition method for analytic treatment of non-linear integral equations and
474 systems of non-linear integral equations. International Journal of Computer Mathematics, 2005, 82,
\(1.0 \quad 18\) 1107-1115.
Exact solutions for the ZK-MEW equation by using the
Journal of Computer Mathematics, 2005, 82, 699-708.
477 The tanh method for traveling wave solutions of nonlinear equations. Applied Mathematics and Computation, 2004, 154, 713-723.
\(\square\)
Mathematics and Computation, 2004, 148, 571-585.

Compact structures for variants of the generalized \(K d V\) and the generalized \(K P\) equations. Applied
Distinct variants of the \(K d V\) equation with compact and noncompact structures. Applied Mathematics
1.4

87

The sineâ \(€\) "cosine method for obtaining solutions with compact and noncompact structures. Applied
Compact and noncompact solutions for nonlinear dispersive variants of the generalized KdV
equation. Applied Mathematics and Computation, 2004, 159,577-588.

490 Special types of the nonlinear dispersive Zakharovâ€"Kuznetsov equation with compactons, solitons, and periodic solutions. International Journal of Computer Mathematics, 2004, 81, 1107-1119.
1.0

25
491 \begin{tabular}{l} 
Solutions of compact and noncompact structures for nonlinear Kleinâ \(€^{\prime \prime}\) Cordon-type equation. Applied \\
Mathematics and Computation, 2003, 134, 487-500.
\end{tabular}\(\quad\)\begin{tabular}{l} 
A study on nonlinear dispersive partial differential equations of compact and noncompact solutions. \\
492 Applied Mathematics and Computation, 2003, 135,399-409. \\
493 The effect of the order of nonlinear dispersive equation on the compact and noncompact solutions. \\
\begin{tabular}{l} 
Applied Mathematics and Computation, 2003, 138,309-319.
\end{tabular} \\
1.4
\end{tabular}

494 Compacton solutions and nonlinear dispersion. Applied Mathematics and Computation, 2003, 142, 495-509.
495 Compact and noncompact structures formed by nonlinear equations with positive and negativeexponents. Applied Mathematics and Computation, 2003, 146, 1-25.
\(1.4 \quad 3\)

The existence of noise terms for systems of inhomogeneous differential and integral equations.
496 Applied Mathematics and Computation, 2003, 146, 81-92.
1.4

40

> Compact and noncompact structures in a class of nonlinearly dispersive equations. Mathematics and
> Computers in Simulation, 2003, 62, 171-189.
\(2.4 \quad 23\)

An analytic study of compactons structures in a class of nonlinear dispersive equations. Mathematics and Computers in Simulation, 2003, 63, 35-44.
2.4

57


Solutions of compact and noncompact structures for nonlinear Kleinâ€"Cordon-type equation. Applied
1.4

38
494 495-509.

507 General compactons solutions for the focusing branch of the nonlinear dispersive K(n,n) equations 507 in higher-dimensional spaces. Applied Mathematics and Computation, 2002, 133, 213-227.
1.4

79
508 General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n,n)
The numerical solution of fifth-order boundary value problems by the decomposition method. Journal
of Computational and Applied Mathematics, 2001, 136, 259-270.
\(1.1 \quad 95\)

510 A new modification of the Adomian decomposition method for linear and nonlinear operators.
Applied Mathematics and Computation, 2001, 122, 393-405.
1.4

238

511 Analytic treatment for variable coefficient fourth-order parabolic partial differential equations.
Applied Mathematics and Computation, 2001, 123, 219-227.

512 The modified decomposition method applied to unsteady flow of gas through a porous medium.
Applied Mathematics and Computation, 2001, 118, 123-132.
1.4

39
A new algorithm for solving differential equations of Laneâ \(\epsilon_{\text {" }}\) Emden type. Applied Mathematics and
Computation, 2001, 118, 287-310.
\(\qquad\)
```

515 A reliable algorithm for solving boundary value problems for higher-order integro-differential
equations. Applied Mathematics and Computation, 2001, 118, 327-342.

```
\(1.4 \quad 85\)

Exact solutions to nonlinear diffusion equations obtained by the decomposition method. Applied
1.4

59
Mathematics and Computation, 2001, 123, 109-122.
45
516

A computational approach to soliton solutions of the Kadomtsevâ€"Petviashvili equation. Applied
\(1.4 \quad 106\)
517 Mathematics and Computation, 2001, 123, 205-217.

The decomposition method applied to systems of partial differential equations and to the
reactionâ \(\epsilon^{" d}\) diffusion Brusselator model. Applied Mathematics and Computation, 2000, 110, 251-264.
1.4

103

A new algorithm for calculating adomian polynomials for nonlinear operators. Applied Mathematics
1.4

450
519 and Computation, 2000, 111, 33-51.

A NOTE ON USING ADOMIAN DECOMPOSITION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS.
\begin{tabular}{|c|c|c|c|}
\hline 523 & Analytical approximations and PadÃ® approximants for Volterra's population model. Applied Mathematics and Computation, 1999, 100, 13-25. & 1.4 & 156 \\
\hline 524 & A reliable modification of Adomian decomposition method. Applied Mathematics and Computation, 1999, 102, 77-86. & 1.4 & 493 \\
\hline 525 & The modified decomposition method and PadÃ@ approximants for solving the Thomasâ \(€^{\text {"F Fermi equation. }}\) Applied Mathematics and Computation, 1999, 105, 11-19. & 1.4 & 141 \\
\hline 526 & A reliable technique for solving the wave equation in an infinite one-dimensional medium. Applied Mathematics and Computation, 1998, 92, 1-7. & 1.4 & 52 \\
\hline 527 & A comparison between Adomian decomposition method and Taylor series method in the series solutions. Applied Mathematics and Computation, 1998, 97, 37-44. & 1.4 & 108 \\
\hline 528 & Equality of partial solutions in the decomposition method for partial differential equations. International Journal of Computer Mathematics, 1997, 65, 293-308. & 1.0 & 14 \\
\hline 529 & Necessary conditions for the appearance of noise terms in decomposition solution series. Applied Mathematics and Computation, 1997, 81, 265-274. & 1.4 & 75 \\
\hline 530 & A study on a boundary-layer equation arising in an incompressible fluid. Applied Mathematics and Computation, 1997, 87, 199-204. & 1.4 & 31 \\
\hline 531 & The decomposition method for approximate solution of the Goursat problem. Applied Mathematics and Computation, 1995, 69, 299-311. & 1.4 & 44 \\
\hline 532 & A new approach to the nonlinear advection problem: An application of the decomposition method. Applied Mathematics and Computation, 1995, 72, 175-181. & 1.4 & 38 \\
\hline 533 & A comparison of modified runge-kutta formulas based on a variety of means. International Journal of Computer Mathematics, 1994, 50, 105-112. & 1.0 & 13 \\
\hline 534 & On the numerical solution of by a class of nonlinear trapezoidal formulas. International Journal of Computer Mathematics, 1994, 51, 229-238. & 1.0 & 6 \\
\hline 535 & On the numerical solution of the Goursat problem. Applied Mathematics and Computation, 1993, 59, 89-95. & 1.4 & 9 \\
\hline
\end{tabular}

The nonlocal potential transformation method and solitary wave solutions for higher dimensions in shallow water waves. Waves in Random and Complex Media, 0, , 1-15.
1.65

5

537 New Gaussian solitary wave solutions in nanofibers. Waves in Random and Complex Media, 0, 1-13. 3

538 The singular manifold method for a class of fractional-order diffusion equations. Waves in Random and Complex Media, 0, , 1-12.
1.6

\section*{Axisymmetric forced flow of nonhomogeneous nanofluid over heated permeable cylinders. Waves in Random and Complex Media, 0, , 1-29.}```

