
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/637902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The bidirectional lung brain-axis of amyloid-β pathology: ozone dysregulates the peri-plaque microenvironment. Brain, 2023, 146, 991-1005.	7.6	17
2	The contribution of the neuroendocrine system to adaption after repeated daily ozone exposure in rats. Toxicology and Applied Pharmacology, 2022, 447, 116085.	2.8	8
3	Ozone-induced changes in oxidative stress parameters in brain regions of adult, middle-age, and senescent Brown Norway rats. Toxicology and Applied Pharmacology, 2021, 410, 115351.	2.8	15
4	Iron and zinc homeostases in female rats with physically active and sedentary lifestyles. BioMetals, 2021, 34, 97-105.	4.1	7
5	Diets enriched with coconut, fish, or olive oil modify peripheral metabolic effects of ozone in rats. Toxicology and Applied Pharmacology, 2021, 410, 115337.	2.8	4
6	The Role of Hepatic Vagal Tone in Ozone-Induced Metabolic Dysfunction in the Liver. Toxicological Sciences, 2021, 181, 229-245.	3.1	7
7	Pulmonary and vascular effects of acute ozone exposure in diabetic rats fed an atherogenic diet. Toxicology and Applied Pharmacology, 2021, 415, 115430.	2.8	4
8	Peripheral metabolic effects of ozone exposure in healthy and diabetic rats on normal or high-cholesterol diet. Toxicology and Applied Pharmacology, 2021, 415, 115427.	2.8	6
9	The dynamicity of acute ozone-induced systemic leukocyte trafficking and adrenal-derived stress hormones. Toxicology, 2021, 458, 152823.	4.2	17
10	Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. Toxics, 2021, 9, 132.	3.7	7
11	Perinatal High-Fat Diet Influences Ozone-Induced Responses on Pulmonary Oxidant Status and the Molecular Control of Mitophagy in Female Rat Offspring. International Journal of Molecular Sciences, 2021, 22, 7551.	4.1	4
12	The Use of Standardized Diesel Exhaust Particles in Alzheimer's Disease Research. Journal of Alzheimer's Disease, 2021, 84, 607-608.	2.6	3
13	Ozone-induced acute phase response in lung versus liver: the role of adrenal-derived stress hormones. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2021, 84, 235-248.	2.3	3
14	Ozone Reacts With Carbon Black to Produce a Fulvic Acid-Like Substance and Increase an Inflammatory Effect. Toxicologic Pathology, 2020, 48, 887-898.	1.8	7
15	Fish oil and olive oil-enriched diets alleviate acute ozone-induced cardiovascular effects in rats. Toxicology and Applied Pharmacology, 2020, 409, 115296.	2.8	6
16	Peat smoke inhalation alters blood pressure, baroreflex sensitivity, and cardiac arrhythmia risk in rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 748-763.	2.3	8
17	Diesel exhaust impairs TREM2 to dysregulate neuroinflammation. Journal of Neuroinflammation, 2020, 17, 351.	7.2	13
18	Offspring susceptibility to metabolic alterations due to maternal high-fat diet and the impact of inhaled ozone used as a stressor. Scientific Reports, 2020, 10, 16353.	3.3	13

#	Article	IF	CITATIONS
19	A single exposure to eucalyptus smoke sensitizes rats to the postprandial cardiovascular effects of a high carbohydrate oral load. Inhalation Toxicology, 2020, 32, 342-353.	1.6	3
20	Ozone-induced fetal growth restriction in rats is associated with sexually dimorphic placental and fetal metabolic adaptation. Molecular Metabolism, 2020, 42, 101094.	6.5	11
21	Independent roles of beta-adrenergic and glucocorticoid receptors in systemic and pulmonary effects of ozone. Inhalation Toxicology, 2020, 32, 155-169.	1.6	8
22	Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2020, 17, 387-398.	3.2	120
23	Ozone-Induced Dysregulation of Neuroendocrine Axes Requires Adrenal-Derived Stress Hormones. Toxicological Sciences, 2019, 172, 38-50.	3.1	36
24	Susceptibility Variations in Air Pollution Health Effects: Incorporating Neuroendocrine Activation. Toxicologic Pathology, 2019, 47, 962-975.	1.8	18
25	12-hydroxy oleic acid impairs endothelium-dependent vasorelaxation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 383-386.	2.3	1
26	The influence of maternal and perinatal high-fat diet on ozone-induced pulmonary responses in offspring. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 86-98.	2.3	6
27	Respiratory Toxicity Biomarkers. , 2019, , 229-250.		2
28	Exacerbation of ozone-induced pulmonary and systemic effects by β2-adrenergic and/or glucocorticoid receptorÂagonist/s. Scientific Reports, 2019, 9, 17925.	3.3	14
29	Mitochondrial Bioenergetics in Brain Following Ozone Exposure in Rats Maintained on Coconut, Fish and Olive Oil-Rich Diets. International Journal of Molecular Sciences, 2019, 20, 6303.	4.1	15
30	Fetal growth outcomes following peri-implantation exposure of Long-Evans rats to noise and ozone differ by sex. Biology of Sex Differences, 2019, 10, 54.	4.1	7
31	Aspirin pre-treatment modulates ozone-induced fetal growth restriction and alterations in uterine blood flow in rats. Reproductive Toxicology, 2019, 83, 63-72.	2.9	8
32	Ozone Exposure During Implantation Increases Serum Bioactivity in HTR-8/SVneo Trophoblasts. Toxicological Sciences, 2019, 168, 535-550.	3.1	10
33	Effects of Simulated Smog Atmospheres in Rodent Models of Metabolic and Immunologic Dysfunction. Environmental Science & Technology, 2018, 52, 3062-3070.	10.0	13
34	Adrenergic and glucocorticoid receptor antagonists reduce ozone-induced lung injury and inflammation. Toxicology and Applied Pharmacology, 2018, 339, 161-171.	2.8	47
35	Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil. Toxicological Sciences, 2018, 163, 57-69.	3.1	23
36	Beta-2 Adrenergic and Glucocorticoid Receptor Agonists Modulate Ozone-Induced Pulmonary Protein Leakage and Inflammation in Healthy and Adrenalectomized Rats. Toxicological Sciences, 2018, 166, 288-305.	3.1	28

#	Article	IF	CITATIONS
37	Neuroendocrine Regulation of Air Pollution Health Effects: Emerging Insights. Toxicological Sciences, 2018, 164, 9-20.	3.1	74
38	Acute inhalation of ozone induces DNA methylation of apelin in lungs of Long-Evans rats. Inhalation Toxicology, 2018, 30, 178-186.	1.6	18
39	Acute peat smoke inhalation sensitizes rats to the postprandial cardiometabolic effects of a high fat oral load. Science of the Total Environment, 2018, 643, 378-391.	8.0	10
40	Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation. Toxicology and Applied Pharmacology, 2017, 329, 249-258.	2.8	35
41	Respiratory Effects and Systemic Stress Response Following Acute Acrolein Inhalation in Rats. Toxicological Sciences, 2017, 158, 454-464.	3.1	35
42	Atypical microglial response to biodiesel exhaust in healthy and hypertensive rats. NeuroToxicology, 2017, 59, 155-163.	3.0	14
43	Uterine Artery Flow and Offspring Growth in Long-Evans Rats following Maternal Exposure to Ozone during Implantation. Environmental Health Perspectives, 2017, 125, 127005.	6.0	18
44	Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats. Toxicology and Applied Pharmacology, 2016, 306, 47-57.	2.8	59
45	Pulmonary sensitivity to ozone exposure in sedentary versus chronically trained, female rats. Inhalation Toxicology, 2016, 28, 293-302.	1.6	9
46	Sex and strain-based inflammatory response to repeated tobacco smoke exposure in spontaneously hypertensive and Wistar Kyoto rats. Inhalation Toxicology, 2016, 28, 677-685.	1.6	17
47	Age-related differences in pulmonary effects of acute and subchronic episodic ozone exposures in Brown Norway rats. Inhalation Toxicology, 2016, 28, 313-323.	1.6	17
48	Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2880-2890.	2.4	62
49	Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1382-1391.	5.6	159
50	Long-term toxicity of naturally occurring asbestos in male Fischer 344 rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 49-60.	2.3	16
51	Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats. Toxicological Sciences, 2016, 150, 312-322.	3.1	64
52	Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats. Inhalation Toxicology, 2015, 27, 80-92.	1.6	15
53	Strain differences in antioxidants in rat models of cardiovascular disease exposed to ozone. Inhalation Toxicology, 2015, 27, 54-62.	1.6	9
54	Comparative cardiopulmonary toxicity of exhausts from soy-based biofuels and diesel in healthy and hypertensive rats. Inhalation Toxicology, 2015, 27, 545-556.	1.6	22

#	Article	IF	CITATIONS
55	Clinical and pathological manifestations of cardiovascular disease in rat models: the influence of acute ozone exposure. Inhalation Toxicology, 2015, 27, 26-38.	1.6	10
56	Variability in ozone-induced pulmonary injury and inflammation in healthy and cardiovascular-compromised rat models. Inhalation Toxicology, 2015, 27, 39-53.	1.6	26
57	Left ventricular gene expression profile of healthy and cardiovascular compromised rat models used in air pollution studies. Inhalation Toxicology, 2015, 27, 63-79.	1.6	5
58	Persistent effects of Libby amphibole and amosite asbestos following subchronic inhalation in rats. Particle and Fibre Toxicology, 2015, 13, 17.	6.2	12
59	Executive Summary: variation in susceptibility to ozone-induced health effects in rodent models of cardiometabolic disease. Inhalation Toxicology, 2015, 27, 105-115.	1.6	14
60	Pulmonary transcriptional response to ozone in healthy and cardiovascular compromised rat models. Inhalation Toxicology, 2015, 27, 93-104.	1.6	7
61	Whole body plethysmography reveals differential ventilatory responses to ozone in rat models of cardiovascular disease. Inhalation Toxicology, 2015, 27, 14-25.	1.6	17
62	Rat models of cardiometabolic diseases: baseline clinical chemistries, and rationale for their use in examining air pollution health effects. Inhalation Toxicology, 2015, 27, 2-13.	1.6	14
63	Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats. Toxicology and Applied Pharmacology, 2015, 286, 65-79.	2.8	109
64	Air Pollution and Insulin Resistance: Do All Roads Lead to Rome?. Diabetes, 2015, 64, 712-714.	0.6	27
65	Respiratory toxicity biomarkers. , 2014, , 217-239.		6
66	Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats. Particle and Fibre Toxicology, 2014, 11, 36.	6.2	19
67	Early and Delayed Effects of Naturally Occurring Asbestos on Serum Biomarkers of Inflammation and Metabolism. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 1024-1039.	2.3	26
68	The Effect of Composition, Size, and Solubility on Acute Pulmonary Injury in Rats Following Exposure to Mexico City Ambient Particulate Matter Samples. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 1164-1182.	2.3	51
69	Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects. Toxicological Sciences, 2014, 142, 403-417.	3.1	52
70	Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention. Toxicology and Applied Pharmacology, 2013, 268, 232-240.	2.8	26
71	Cardiovascular and thermoregulatory responses of unrestrained rats exposed to filtered or unfiltered diesel exhaust. Inhalation Toxicology, 2012, 24, 296-309.	1.6	16
72	Myocardial Mitochondrial Injury Induced by Pulmonary Exposure to Particulate Matter in Rats. Toxicologic Pathology, 2012, 40, 779-788.	1.8	29

#	Article	IF	CITATIONS
73	Sumas Mountain Chrysotile Induces Greater Lung Fibrosis in Fischer 344 Rats Than Libby Amphibole, El Dorado Tremolite, and Ontario Ferroactinolite. Toxicological Sciences, 2012, 130, 405-415.	3.1	15
74	Subchronic Pulmonary Pathology, Iron Overload, and Transcriptional Activity after Libby Amphibole Exposure in Rat Models of Cardiovascular Disease. Environmental Health Perspectives, 2012, 120, 85-91.	6.0	21
75	Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhalation Toxicology, 2012, 24, 320-339.	1.6	69
76	Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure. Toxicology and Applied Pharmacology, 2012, 260, 105-114.	2.8	18
77	The role of iron in Libby amphibole-induced acute lung injury and inflammation. Inhalation Toxicology, 2011, 23, 313-323.	1.6	16
78	Pulmonary Inflammatory and Fibrotic Responses in Fischer 344 Rats After Intratracheal Instillation Exposure to Libby Amphibole. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2011, 74, 1111-1132.	2.3	24
79	The role of cardiovascular disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation. Inhalation Toxicology, 2011, 23, 129-141.	1.6	7
80	Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles. Environmental Health Perspectives, 2011, 119, 312-318.	6.0	97
81	Pulmonary Oxidative Stress, Inflammation, and Dysregulated Iron Homeostasis in Rat Models of Cardiovascular Disease. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 641-656.	2.3	32
82	One-Month Diesel Exhaust Inhalation Produces Hypertensive Gene Expression Pattern in Healthy Rats. Environmental Health Perspectives, 2009, 117, 38-46.	6.0	54
83	Differential Pulmonary Retention of Diesel Exhaust Particles in Wistar Kyoto and Spontaneously Hypertensive Rats. Toxicological Sciences, 2009, 111, 392-401.	3.1	12
84	Systemic translocation of 70Zinc: Kinetics following intratracheal instillation in rats. Toxicology and Applied Pharmacology, 2009, 234, 25-32.	2.8	32
85	Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals. Toxicology and Applied Pharmacology, 2009, 241, 71-80.	2.8	49
86	Aging and Susceptibility to Toluene in Rats: A Pharmacokinetic, Biomarker, and Physiological Approach. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 73, 301-318.	2.3	19
87	Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicology and Applied Pharmacology, 2009, 239, 224-232.	2.8	97
88	Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats. Particle and Fibre Toxicology, 2008, 5, 19.	6.2	41
89	Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats. Toxicology and Applied Pharmacology, 2008, 232, 69-77.	2.8	35
90	Cardiopulmonary Responses of Intratracheally Instilled Tire Particles and Constituent Metal Components. Inhalation Toxicology, 2008, 20, 473-484.	1.6	43

#	Article	IF	CITATIONS
91	Acute Tobacco Smoke-Induced Airways Inflammation in Spontaneously Hypertensive Rats. Inhalation Toxicology, 2008, 20, 623-633.	1.6	16
92	The Role of Particulate Matter-Associated Zinc in Cardiac Injury in Rats. Environmental Health Perspectives, 2008, 116, 13-20.	6.0	73
93	Systemic Translocation of Particulate Matter-Associated Metals Following a Single Intratracheal Instillation in Rats. Toxicological Sciences, 2007, 98, 231-239.	3.1	109
94	Cardiopulmonary Responses of Wistar Kyoto, Spontaneously Hypertensive, and Stroke-prone Spontaneously Hypertensive Rats to Particulate Matter (PM) Exposure. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 1912-1922.	2.3	23
95	The Spontaneously Hypertensive Rat: An Experimental Model of Sulfur Dioxide-Induced Airways Disease. Toxicological Sciences, 2006, 94, 193-205.	3.1	32
96	Cardiovascular and blood coagulative effects of pulmonary zinc exposure. Toxicology and Applied Pharmacology, 2006, 211, 41-52.	2.8	30
97	Systemic Imbalance of Essential Metals and Cardiac Gene Expression in Rats Following Acute Pulmonary Zinc Exposure. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2006, 69, 2011-2032.	2.3	32
98	Acute Pulmonary and Systemic Effects of Inhaled Coal Fly Ash in Rats: Comparison to Ambient Environmental Particles. Toxicological Sciences, 2006, 93, 390-399.	3.1	55
99	Consistent Pulmonary and Systemic Responses from Inhalation of Fine Concentrated Ambient Particles: Roles of Rat Strains Used and Physicochemical Properties. Environmental Health Perspectives, 2005, 113, 1561-1568.	6.0	58
100	Cardiovascular Responses in Unrestrained WKY Rats to Inhaled Ultrafine Carbon Particles. Inhalation Toxicology, 2005, 17, 29-42.	1.6	46
101	Bioavailability of Particle-Associated Air Pollutants and Relationship to Cardiopulmonary Injury. Lung Biology in Health and Disease, 2005, , 75-133.	0.1	0
102	Hypertensive Rats are Susceptible to TLR4-Mediated Signaling Following Exposure to Combustion Source Particulate Matter. Inhalation Toxicology, 2004, 16, 5-18.	1.6	34
103	Toxic responses of the lung to inhaled pollutants: benefits and limitations of lung-disease models. Toxicology Letters, 2003, 140-141, 195-203.	0.8	12
104	Inhaled Environmental Combustion Particles Cause Myocardial Injury in the Wistar Kyoto Rat. Toxicological Sciences, 2003, 71, 237-245.	3.1	93
105	TEMPORAL ASSOCIATION BETWEEN PULMONARY AND SYSTEMIC EFFECTS OF PARTICULATE MATTER IN HEALTHY AND CARDIOVASCULAR COMPROMISED RATS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 1545-1569.	2.3	102
106	Pulmonary and Systemic Effects of Zinc-Containing Emission Particles in Three Rat Strains: Multiple Exposure Scenarios. Toxicological Sciences, 2002, 70, 73-85.	3.1	70
107	Rodent models of susceptibility: what is their place in inhalation toxicology?. Respiration Physiology, 2001, 128, 57-70.	2.7	16
108	ACUTE LUNG INJURY FROM INTRATRACHEAL EXPOSURE TO FUGITIVE RESIDUAL OIL FLY ASH AND ITS CONSTITUENT METALS IN NORMOAND SPONTANEOUSLY HYPERTENSIVE RATS. Inhalation Toxicology, 2001, 13, 37-54.	1.6	39

#	ARTICLE	IF	CITATIONS
109	The Spontaneously Hypertensive Rat as a Model of Human Cardiovascular Disease: Evidence of Exacerbated Cardiopulmonary Injury and Oxidative Stress from Inhaled Emission Particulate Matter. Toxicology and Applied Pharmacology, 2000, 164, 250-263.	2.8	178
110	Pulmonary Responses to Oil Fly Ash Particles in the Rat Differ by Virtue of Their Specific Soluble Metals,. Toxicological Sciences, 1998, 43, 204-212.	3.1	61
111	Rodent Models of Cardiopulmonary Disease: Their Potential Applicability in Studies of Air Pollutant Susceptibility. Environmental Health Perspectives, 1998, 106, 111.	6.0	10
112	Pulmonary Responses to Oil Fly Ash Particles in the Rat Differ by Virtue of Their Specific Soluble Metals. Toxicological Sciences, 1998, 43, 204-212.	3.1	171
113	Pulmonary Structural and Extracellular Matrix Alterations in Fischer 344 Rats Following Subchronic Phosgene Exposure, ,. Fundamental and Applied Toxicology, 1997, 37, 54-63.	1.8	54
114	Ozone-induced tissue injury and changes in antioxidant homeostasis in normal and ascorbate-deficient guinea pigs. Biochemical Pharmacology, 1995, 50, 243-251.	4.4	27
115	Adrenal stress hormone regulation of hepatic homeostatic function after an acute ozone exposure in Wistar-Kyoto male rats. Toxicological Sciences, 0, , .	3.1	7