Alfred L Goldberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6376670/publications.pdf

Version: 2024-02-01

215 papers 52,702 citations

104 h-index 206 g-index

220 all docs

220 docs citations

times ranked

220

38654 citing authors

#	Article	IF	CITATIONS
1	Raising cGMP restores proteasome function and myelination in mice with a proteotoxic neuropathy. Brain, 2022, 145, 168-178.	3.7	7
2	Mammalian Ddi2 is a shuttling factor containing a retroviral protease domain that influences binding of ubiquitylated proteins and proteasomal degradation. Journal of Biological Chemistry, 2022, 298, 101875.	1.6	6
3	26S proteasomes become stably activated upon heat shock when ubiquitination and protein degradation increase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
4	ClpX Is Essential and Activated by Single-Strand DNA Binding Protein in Mycobacteria. Journal of Bacteriology, 2021, 203, .	1.0	6
5	Protein Turnover Intracellular Protein Degradation. , 2021, , 212-224.		О
6	Mechanisms That Activate 26S Proteasomes and Enhance Protein Degradation. Biomolecules, 2021, 11 , 779.	1.8	19
7	Multiple myeloma cells are exceptionally sensitive to heat shock, which overwhelms their proteostasis network and induces apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21588-21597.	3.3	16
8	cGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14220-14230.	3.3	57
9	An allosteric switch regulates <i>Mycobacterium tuberculosis</i> ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5895-5906.	3.3	47
10	Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4664-4674.	3.3	55
11	Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. Journal of Biological Chemistry, 2019, 294, 15218-15234.	1.6	37
12	SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13404-13413.	3.3	40
13	PDE1 inhibition facilitates proteasomal degradation of misfolded proteins and protects against cardiac proteinopathy. Science Advances, 2019, 5, eaaw5870.	4.7	49
14	26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4228-4237.	3.3	89
15	Development of high throughput screening methods for inhibitors of ClpC1P1P2 from Mycobacteria tuberculosis. Analytical Biochemistry, 2019, 567, 30-37.	1.1	17
16	The antibiotic cyclomarin blocks arginine-phosphate–induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2018, 293, 8379-8393.	1.6	36
17	Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. Journal of Cell Biology, 2018, 217, 1757-1776.	2.3	74
18	Impairment of protein degradation and proteasome function in hereditary neuropathies. Glia, 2018, 66, 379-395.	2.5	32

#	Article	IF	CITATIONS
19	UBL domain of Usp14 and other proteins stimulates proteasome activities and protein degradation in cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11642-E11650.	3.3	49
20	Measuring the Overall Rate of Protein Breakdown in Cells and the Contributions of the Ubiquitin-Proteasome and Autophagy-Lysosomal Pathways. Methods in Molecular Biology, 2018, 1844, 261-276.	0.4	29
21	Methods to Rapidly Prepare Mammalian 26S Proteasomes for Biochemical Analysis. Methods in Molecular Biology, 2018, 1844, 277-288.	0.4	7
22	Measurement of the Multiple Activities of 26S Proteasomes. Methods in Molecular Biology, 2018, 1844, 289-308.	0.4	7
23	Exploring the Regulation of Proteasome Function by Subunit Phosphorylation. Methods in Molecular Biology, 2018, 1844, 309-319.	0.4	16
24	ZFAND5/ZNF216 is an activator of the 26S proteasome that stimulates overall protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9550-E9559.	3.3	40
25	Inhibition of the Proteasome \hat{l}^22 Site Sensitizes Triple-Negative Breast Cancer Cells to \hat{l}^25 Inhibitors and Suppresses Nrf1 Activation. Cell Chemical Biology, 2017, 24, 218-230.	2.5	83
26	The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasomal activities and ubiquitin-independent proteolysis. Journal of Biological Chemistry, 2017, 292, 9830-9839.	1.6	65
27	The Logic of the 26S Proteasome. Cell, 2017, 169, 792-806.	13.5	667
28	Regulating protein breakdown through proteasome phosphorylation. Biochemical Journal, 2017, 474, 3355-3371.	1.7	95
29	The requirements of yeast Hsp70 of SSA family for the ubiquitin-dependent degradation of short-lived and abnormal proteins. Biochemical and Biophysical Research Communications, 2016, 475, 100-106.	1.0	18
30	Structure and Functional Properties of the Active Form of the Proteolytic Complex, ClpP1P2, from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 7465-7476.	1.6	50
31	Reply to Vangala et al.: Complete inhibition of the proteasome reduces new proteasome production by causing Nrf1 aggregation. Current Biology, 2016, 26, R836-R837.	1.8	25
32	Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR. Autophagy, 2016, 12, 1967-1970.	4.3	53
33	Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease. Molecular Microbiology, 2016, 101, 194-209.	1.2	73
34	Control of proteasomal proteolysis by mTOR. Nature, 2016, 529, E1-E2.	13.7	74
35	Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nature Medicine, 2016, 22, 46-53.	15. 2	352
36	Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. Journal of Cellular and Molecular Medicine, 2015, 19, 2181-2192.	1.6	13

#	Article	IF	CITATIONS
37	Muscle wasting in disease: molecular mechanisms and promising therapies. Nature Reviews Drug Discovery, 2015, 14, 58-74.	21.5	792
38	Blocking Cancer Growth with Less POMP or Proteasomes. Molecular Cell, 2015, 59, 143-145.	4. 5	8
39	Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8626-8631.	3. 3	98
40	Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity. Journal of Biological Chemistry, 2015, 290, 11008-11020.	1.6	51
41	Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nature Communications, 2015, 6, 6670.	5.8	522
42	The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo. Antimicrobial Agents and Chemotherapy, 2015, 59, 880-889.	1.4	148
43	Muscle Wasting in Fasting Requires Activation of NF-l ^o B and Inhibition of AKT/Mechanistic Target of Rapamycin (mTOR) by the Protein Acetylase, GCN5. Journal of Biological Chemistry, 2015, 290, 30269-30279.	1.6	43
44	Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. ELife, $2015, 4, .$	2.8	67
45	Lassomycin, a Ribosomally Synthesized Cyclic Peptide, Kills Mycobacterium tuberculosis by Targeting the ATP-Dependent Protease ClpC1P1P2. Chemistry and Biology, 2014, 21, 509-518.	6.2	344
46	Autoubiquitination of the 26S Proteasome on Rpn13 Regulates Breakdown of Ubiquitin Conjugates. EMBO Journal, 2014, 33, 1159-1176.	3. 5	143
47	Mechanisms of muscle growth and atrophy in mammals and <i>Drosophila</i> . Developmental Dynamics, 2014, 243, 201-215.	0.8	112
48	Proteasome-Mediated Processing of Nrf1 Is Essential for Coordinate Induction of All Proteasome Subunits and p97. Current Biology, 2014, 24, 1573-1583.	1.8	190
49	Re-examining class-I presentation and the DRiP hypothesis. Trends in Immunology, 2014, 35, 144-152.	2.9	99
50	Enhanced ubiquitin-dependent degradation by Nedd4 protects against \hat{l}_{\pm} -synuclein accumulation and toxicity in animal models of Parkinson's disease. Neurobiology of Disease, 2014, 64, 79-87.	2.1	71
51	Trim32 reduces PI3K–Akt–FoxO signaling in muscle atrophy by promoting plakoglobin–PI3K dissociation. Journal of Cell Biology, 2014, 204, 747-758.	2.3	82
52	Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. International Journal of Biochemistry and Cell Biology, 2013, 45, 2333-2347.	1,2	232
53	The influence of skeletal muscle on systemic aging and lifespan. Aging Cell, 2013, 12, 943-949.	3.0	179
54	SIRT1 Protein, by Blocking the Activities of Transcription Factors FoxO1 and FoxO3, Inhibits Muscle Atrophy and Promotes Muscle Growth. Journal of Biological Chemistry, 2013, 288, 30515-30526.	1.6	160

#	Article	lF	Citations
55	BMP signaling controls muscle mass. Nature Genetics, 2013, 45, 1309-1318.	9.4	379
56	Mechanisms of skeletal muscle aging: insights from <i>Drosophila</i> and mammalian models. DMM Disease Models and Mechanisms, 2013, 6, 1339-52.	1.2	201
57	Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?. EMBO Journal, 2013, 32, 552-565.	3.5	209
58	Immuno- and Constitutive Proteasomes Do Not Differ in Their Abilities to Degrade Ubiquitinated Proteins. Cell, 2013, 152, 1184-1194.	13.5	99
59	Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis. Cell, 2013, 153, 1012-1024.	13.5	272
60	The ATP Costs and Time Required to Degrade Ubiquitinated Proteins by the 26 S Proteasome. Journal of Biological Chemistry, 2013, 288, 29215-29222.	1.6	122
61	Ubiquitinated Proteins Activate the Proteasomal ATPases by Binding to Usp14 or Uch37 Homologs. Journal of Biological Chemistry, 2013, 288, 7781-7790.	1.6	93
62	Lon-A Peptidase, Endopeptidase La., 2013,, 3527-3533.		1
63	Mycobacterium tuberculosis ClpP1 and ClpP2 Function Together in Protein Degradation and Are Required for Viability in vitro and During Infection. PLoS Pathogens, 2012, 8, e1002511.	2.1	161
64	The active ClpP protease from <i>M. tuberculosis </i> i>is a complex composed of a heptameric ClpP1 and a ClpP2 ring. EMBO Journal, 2012, 31, 1529-1541.	3.5	118
65	Development of proteasome inhibitors as research tools and cancer drugs. Journal of Cell Biology, 2012, 199, 583-588.	2.3	232
66	S5a/Rpn10, a UIM-Protein, as a Universal Substrate for Ubiquitination. Methods in Molecular Biology, 2012, 832, 653-660.	0.4	3
67	Affinity Purification of Mammalian 26S Proteasomes Using an Ubiquitin-Like Domain. Methods in Molecular Biology, 2012, 832, 423-432.	0.4	33
68	Cathepsins L and Z Are Critical in Degrading Polyglutamine-containing Proteins within Lysosomes. Journal of Biological Chemistry, 2012, 287, 17471-17482.	1.6	25
69	Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. Journal of Cell Biology, 2012, 198, 575-589.	2.3	165
70	Bacterial proteolytic complexes as therapeutic targets. Nature Reviews Drug Discovery, 2012, 11, 777-789.	21.5	98
71	The p97/VCP ATPase is critical in muscle atrophy and the accelerated degradation of muscle proteins. EMBO Journal, 2012, 31, 3334-3350.	3.5	78
72	The Direction of Protein Entry into the Proteasome Determines the Variety of Products and Depends on the Force Needed to Unfold Its Two Termini. Molecular Cell, 2012, 48, 601-611.	4.5	61

#	Article	IF	Citations
73	Formation of Nondegradable Forked Ubiquitin Conjugates by Ring-Finger Ligases and Its Prevention by S5a. Methods in Molecular Biology, 2012, 832, 639-652.	0.4	3
74	ATP Binds to Proteasomal ATPases in Pairs with Distinct Functional Effects, Implying an Ordered Reaction Cycle. Cell, 2011, 144, 526-538.	13.5	174
75	A Conserved F Box Regulatory Complex Controls Proteasome Activity in Drosophila. Cell, 2011, 145, 371-382.	13.5	96
76	Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nature Structural and Molecular Biology, 2011, 18, 604-613.	3.6	176
77	Blm10 Protein Promotes Proteasomal Substrate Turnover by an Active Gating Mechanism. Journal of Biological Chemistry, 2011, 286, 42830-42839.	1.6	74
78	Atrogin1/MAFbx. Circulation Research, 2011, 109, 123-126.	2.0	13
79	Ubiquitin ligase Nedd4 promotes α-synuclein degradation by the endosomal–lysosomal pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17004-17009.	3.3	215
80	Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. EMBO Journal, 2011, 30, 3065-3077.	3. 5	104
81	Keeping proteasomes under controlâ€"a role for phosphorylation in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18573-18574.	3.3	20
82	Bortezomib's Scientific Origins and Its Tortuous Path to the Clinic. , 2011, , 1-27.		6
83	Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome–ATPase interactions. EMBO Journal, 2010, 29, 692-702.	3.5	100
84	Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy. Human Molecular Genetics, 2010, 19, 4573-4586.	1.4	62
85	Muscle Wasting in Aged, Sarcopenic Rats Is Associated with Enhanced Activity of the Ubiquitin Proteasome Pathway. Journal of Biological Chemistry, 2010, 285, 39597-39608.	1.6	188
86	Peroxisome Proliferator-activated Receptor \hat{l}^3 Coactivator $1\hat{l}^2$ Overexpression Inhibits Muscle Protein Degradation, Induction of Ubiquitin Ligases, and Disuse Atrophy. Journal of Biological Chemistry, 2010, 285, 19460-19471.	1.6	191
87	Characterization of the brain 26S proteasome and its interacting proteins. Frontiers in Molecular Neuroscience, 2010, 3, .	1.4	99
88	ATP-Dependent Steps in the Binding of Ubiquitin Conjugates to the 26S Proteasome that Commit to Degradation. Molecular Cell, 2010, 40, 671-681.	4.5	160
89	Hsp104 is essential for the selective degradation in yeast of polyglutamine expanded ataxin-1 but not most misfolded proteins generally. Biochemical and Biophysical Research Communications, 2010, 391, 1056-1061.	1.0	11
90	Reversal of Cancer Cachexia and Muscle Wasting by ActRIIB Antagonism Leads to Prolonged Survival. Cell, 2010, 142, 531-543.	13.5	811

#	Article	IF	CITATIONS
91	Functional Consequences of Nucleotide Binding to the Proteasomal ATPases. FASEB Journal, 2010, 24, lb84.	0.2	O
92	The Ubiquitin-interacting Motif Protein, S5a, Is Ubiquitinated by All Types of Ubiquitin Ligases by a Mechanism Different from Typical Substrate Recognition. Journal of Biological Chemistry, 2009, 284, 12622-12632.	1.6	41
93	During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. Journal of Cell Biology, 2009, 185, 1083-1095.	2.3	499
94	S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO Journal, 2009, 28, 1867-1877.	3 . 5	70
95	Isolation of Mammalian 26S Proteasomes and p97/VCP Complexes Using the Ubiquitin-like Domain from HHR23B Reveals Novel Proteasome-Associated Proteins. Biochemistry, 2009, 48, 2538-2549.	1.2	161
96	Getting to First Base in Proteasome Assembly. Cell, 2009, 138, 25-28.	13.5	72
97	Ubiquitinated Proteins Activate the Proteasome by Binding to Usp14/Ubp6, which Causes 20S Gate Opening. Molecular Cell, 2009, 36, 794-804.	4.5	188
98	Mechanism of Gate Opening in the 20S Proteasome by the Proteasomal ATPases. Molecular Cell, 2008, 30, 360-368.	4.5	334
99	Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy, 2008, 4, 378-380.	4.3	144
100	Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. Journal of Cell Biology, 2008, 182, 663-673.	2.3	168
101	The Internal Sequence of the Peptide-Substrate Determines Its N-Terminus Trimming by ERAP1. PLoS ONE, 2008, 3, e3658.	1.1	82
102	On Prions, Proteasomes, and Mad Cows. New England Journal of Medicine, 2007, 357, 1150-1152.	13.9	23
103	Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages*. Journal of Biological Chemistry, 2007, 282, 17375-17386.	1.6	371
104	ATP-induced Structural Transitions in PAN, the Proteasome-regulatory ATPase Complex in Archaea. Journal of Biological Chemistry, 2007, 282, 22921-22929.	1.6	42
105	Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB Journal, 2007, 21, 140-155.	0.2	495
106	Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochemical Society Transactions, 2007, 35, 12-17.	1.6	328
107	FoxO3 Controls Autophagy in Skeletal Muscle In Vivo. Cell Metabolism, 2007, 6, 458-471.	7.2	1,614
108	FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells. Cell Metabolism, 2007, 6, 472-483.	7.2	1,269

#	Article	IF	CITATIONS
109	Docking of the Proteasomal ATPases' Carboxyl Termini in the 20S Proteasome's α Ring Opens the Gate for Substrate Entry. Molecular Cell, 2007, 27, 731-744.	4.5	460
110	c-IAP1 Cooperates with Myc by Acting as a Ubiquitin Ligase for Mad1. Molecular Cell, 2007, 28, 914-922.	4.5	75
111	Proteasomes and their associated ATPases: A destructive combination. Journal of Structural Biology, 2006, 156, 72-83.	1.3	98
112	hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO Journal, 2006, 25, 5742-5753.	3 . 5	208
113	PGC-1Â protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16260-16265.	3.3	841
114	Importance of the Different Proteolytic Sites of the Proteasome and the Efficacy of Inhibitors Varies with the Protein Substrate. Journal of Biological Chemistry, 2006, 281, 8582-8590.	1.6	359
115	Tripeptidyl Peptidase II Is the Major Peptidase Needed to Trim Long Antigenic Precursors, but Is Not Required for Most MHC Class I Antigen Presentation. Journal of Immunology, 2006, 177, 1434-1443.	0.4	84
116	Protein Degradation by the Ubiquitin–Proteasome Pathway in Normal and Disease States. Journal of the American Society of Nephrology: JASN, 2006, 17, 1807-1819.	3.0	1,013
117	Protein misfolding and cellular defense mechanisms in neurodegenerative diseases., 2005,, 108-130.		0
118	The Membrane-associated Inhibitor of Apoptosis Protein, BRUCE/Apollon, Antagonizes Both the Precursor and Mature Forms of Smac and Caspase-9. Journal of Biological Chemistry, 2005, 280, 174-182.	1.6	86
119	The FOXO3a Transcription Factor Regulates Cardiac Myocyte Size Downstream of AKT Signaling. Journal of Biological Chemistry, 2005, 280, 20814-20823.	1.6	308
120	The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17107-17112.	3.3	283
121	Preparation of Hybrid (19Sâ€20Sâ€PA28) Proteasome Complexes and Analysis of Peptides Generated during Protein Degradation. Methods in Enzymology, 2005, 398, 336-352.	0.4	27
122	ATP Binding to PAN or the 26S ATPases Causes Association with the 20S Proteasome, Gate Opening, and Translocation of Unfolded Proteins. Molecular Cell, 2005, 20, 687-698.	4.5	230
123	Nobel Committee Tags Ubiquitin for Distinction. Neuron, 2005, 45, 339-344.	3.8	39
124	Monitoring Activity and Inhibition of 26S Proteasomes with Fluorogenic Peptide Substrates. Methods in Enzymology, 2005, 398, 364-378.	0.4	294
125	Pathway for Degradation of Peptides Generated by Proteasomes. Journal of Biological Chemistry, 2004, 279, 46723-46732.	1.6	164
126	Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nature Immunology, 2004, 5, 670-677.	7.0	229

#	Article	IF	CITATIONS
127	Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB Journal, 2004, 18, 39-51.	0.2	1,329
128	Eukaryotic Proteasomes Cannot Digest Polyglutamine Sequences and Release Them during Degradation of Polyglutamine-Containing Proteins. Molecular Cell, 2004, 14, 95-104.	4.5	363
129	Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell, 2004, 117, 399-412.	13.5	2,490
130	IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E591-E601.	1.8	516
131	Protein Degradation., 2004,, 484-492.		0
132	Protein degradation and protection against misfolded or damaged proteins. Nature, 2003, 426, 895-899.	13.7	1,862
133	The Cytosolic Endopeptidase, Thimet Oligopeptidase, Destroys Antigenic Peptides and Limits the Extent of MHC Class I Antigen Presentation. Immunity, 2003, 18, 429-440.	6.6	137
134	ATP Hydrolysis by the Proteasome Regulatory Complex PAN Serves Multiple Functions in Protein Degradation. Molecular Cell, 2003, 11, 69-78.	4.5	237
135	The Caspase-like Sites of Proteasomes, Their Substrate Specificity, New Inhibitors and Substrates, and Allosteric Interactions with the Trypsin-like Sites. Journal of Biological Chemistry, 2003, 278, 35869-35877.	1.6	167
136	TNFâ€Î± increases ubiquitinâ€conjugating activity in skeletal muscle by upâ€regulating UbcH2/E220k. FASEB Journal, 2003, 17, 1048-1057.	0.2	218
137	Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB Journal, 2002, 16, 1697-1712.	0.2	292
138	The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Molecular Immunology, 2002, 39, 147-164.	1.0	299
139	Slowing muscle atrophy: putting the brakes on protein breakdown. Journal of Physiology, 2002, 545, 729-729.	1.3	26
140	An IFN-γ–induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class l–presented peptides. Nature Immunology, 2002, 3, 1169-1176.	7.0	486
141	Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO Journal, 2002, 21, 2636-2645.	3.5	188
142	The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes. Biochimie, 2001, 83, 311-318.	1.3	91
143	Cellular Defenses against Unfolded Proteins. Neuron, 2001, 29, 15-32.	3.8	948
144	The Axial Channel of the Proteasome Core Particle Is Gated by the Rpt2 ATPase and Controls Both Substrate Entry and Product Release. Molecular Cell, 2001, 7, 1143-1152.	4.5	378

#	Article	IF	Citations
145	Proteins Are Unfolded on the Surface of the ATPase Ring before Transport into the Proteasome. Molecular Cell, 2001, 8, 1339-1349.	4.5	227
146	What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?. Current Opinion in Clinical Nutrition and Metabolic Care, 2001, 4, 183-190.	1.3	348
147	Proteasome inhibitors: from research tools to drug candidates. Chemistry and Biology, 2001, 8, 739-758.	6.2	1,053
148	The Molecular Chaperone DnaJ Is Required for the Degradation of a Soluble Abnormal Protein in Escherichia coli. Journal of Biological Chemistry, 2001, 276, 3920-3928.	1.6	52
149	Major Histocompatibility Complex Class I-presented Antigenic Peptides Are Degraded in Cytosolic Extracts Primarily by Thimet Oligopeptidase. Journal of Biological Chemistry, 2001, 276, 36474-36481.	1.6	128
150	Probing the proteasome pathway. Nature Biotechnology, 2000, 18, 494-496.	9.4	15
151	PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nature Cell Biology, 2000, 2, 833-839.	4.6	323
152	Why Does Threonine, and Not Serine, Function as the Active Site Nucleophile in Proteasomes?. Journal of Biological Chemistry, 2000, 275, 14831-14837.	1.6	112
153	Ca2+-free Calmodulin and Calmodulin Damaged byin Vitro Aging Are Selectively Degraded by 26 S Proteasomes without Ubiquitination. Journal of Biological Chemistry, 2000, 275, 20295-20301.	1.6	100
154	A new model of cancer cachexia: contribution of the ubiquitin-proteasome pathway. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E332-E341.	1.8	30
155	Rapid Degradation of an Abnormal Protein in Escherichia coli Proceeds through Repeated Cycles of Association with GroEL. Journal of Biological Chemistry, 1999, 274, 37743-37749.	1.6	39
156	An Archaebacterial ATPase, Homologous to ATPases in the Eukaryotic 26 S Proteasome, Activates Protein Breakdown by 20 S Proteasomes. Journal of Biological Chemistry, 1999, 274, 26008-26014.	1.6	154
157	The Sizes of Peptides Generated from Protein by Mammalian 26 and 20 S Proteasomes. Journal of Biological Chemistry, 1999, 274, 3363-3371.	1.6	490
158	Proteolysis and class I major histocompatibility complex antigen presentation. Immunological Reviews, 1999, 172, 49-66.	2.8	208
159	DEGRADATION OF CELL PROTEINS AND THE GENERATION OF MHC CLASS I-PRESENTED PEPTIDES. Annual Review of Immunology, 1999, 17, 739-779.	9.5	863
160	Muscle Protein Breakdown and the Critical Role of the Ubiquitin-Proteasome Pathway in Normal and Disease States. Journal of Nutrition, 1999, 129, 227S-237S.	1.3	611
161	Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. Journal of Clinical Investigation, 1999, 104, 1411-1420.	3.9	155
162	Proteasome inhibitors: valuable new tools for cell biologists. Trends in Cell Biology, 1998, 8, 397-403.	3.6	1,331

#	Article	IF	Citations
163	The N-end Rule Pathway Catalyzes a Major Fraction of the Protein Degradation in Skeletal Muscle. Journal of Biological Chemistry, 1998, 273, 25216-25222.	1.6	126
164	Interferon-Î ³ Can Stimulate Post-proteasomal Trimming of the N Terminus of an Antigenic Peptide by Inducing Leucine Aminopeptidase. Journal of Biological Chemistry, 1998, 273, 18734-18742.	1.6	258
165	Range of Sizes of Peptide Products Generated during Degradation of Different Proteins by Archaeal Proteasomes. Journal of Biological Chemistry, 1998, 273, 1982-1989.	1.6	187
166	Proteasome Inhibitors Cause Induction of Heat Shock Proteins and Trehalose, Which Together Confer Thermotolerance in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1998, 18, 30-38.	1.1	221
167	Proteasome Inhibition Leads to a Heat-shock Response, Induction of Endoplasmic Reticulum Chaperones, and Thermotolerance. Journal of Biological Chemistry, 1997, 272, 9086-9092.	1.6	412
168	Processive Degradation of Proteins and Other Catalytic Properties of the Proteasome from Thermoplasma acidophilum. Journal of Biological Chemistry, 1997, 272, 1791-1798.	1.6	200
169	Proteolytic Activity of the ATP-dependent Protease HslVU Can Be Uncoupled from ATP Hydrolysis. Journal of Biological Chemistry, 1997, 272, 21364-21372.	1.6	43
170	Lactacystin and clasto-Lactacystin \hat{l}^2 -Lactone Modify Multiple Proteasome \hat{l}^2 -Subunits and Inhibit Intracellular Protein Degradation and Major Histocompatibility Complex Class I Antigen Presentation. Journal of Biological Chemistry, 1997, 272, 13437-13445.	1.6	357
171	The ATP-dependent HsIVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nature Structural Biology, 1997, 4, 133-139.	9.7	181
172	The Heat-Shock Protein HsIVU from Escherichia Coli is a Protein-Activated ATPase as well as an ATP-Dependent Proteinase. FEBS Journal, 1997, 247, 1143-1150.	0.2	56
173	ATPase and ubiquitin-binding proteins of the yeast proteasome. Molecular Biology Reports, 1997, 24, 17-26.	1.0	22
174	Protein degradation by the proteasome and dissection of its in vivo importance with synthetic inhibitors. Molecular Biology Reports, 1997, 24, 69-75.	1.0	27
175	Mechanisms of Muscle Wasting — The Role of the Ubiquitin–Proteasome Pathway. New England Journal of Medicine, 1996, 335, 1897-1905.	13.9	1,054
176	Importance of the ATP-Ubiquitin-Proteasome Pathway in the Degradation of Soluble and Myofibrillar Proteins in Rabbit Muscle Extracts. Journal of Biological Chemistry, 1996, 271, 26690-26697.	1.6	343
177	FUNCTION OF THE PROTEASOME IN PROTEIN TURNOVER AND ANTIGEN PRESENTATION. Biochemical Society Transactions, 1996, 24, 628S-628S.	1.6	0
178	Structure and Functions of the 20S and 26S Proteasomes. Annual Review of Biochemistry, 1996, 65, 801-847.	5.0	2,357
179	The Proteasome Subunit, C2, Contains an Important Site for Binding of the PA28 (11S) Activator. FEBS Journal, 1996, 236, 510-516.	0.2	47
180	Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature, 1996, 379, 655-657.	13.7	164

#	Article	IF	CITATIONS
181	Proteasome Subunits X and Y Alter Peptidase Activities in Opposite Ways to the Interferon- \hat{I}^3 -induced Subunits LMP2 and LMP7. Journal of Biological Chemistry, 1996, 271, 17275-17280.	1.6	145
182	Gamma-interferon causes a selective induction of the lysosomal proteases, cathepsins B and L, in macrophages. FEBS Letters, 1995, 363, 85-89.	1.3	74
183	Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell, 1994, 78, 761-771.	13.5	2,417
184	The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell, 1994, 78, 773-785.	13.5	2,117
185	Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity, 1994, 1, 533-541.	6.6	418
186	[25] ATP-dependent protease La (Lon) from Escherichia coli. Methods in Enzymology, 1994, 244, 350-375.	0.4	170
187	[26] Mitochondrial ATP-dependent protease from rat liver and yeast. Methods in Enzymology, 1994, 244, 376-383.	0.4	17
188	A role for the ubiquitin-dependent proteolytic pathway in MHC class l-restricted antigen presentation. Nature, 1993, 363, 552-554.	13.7	333
189	\hat{I}^3 -Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature, 1993, 365, 264-267.	13.7	589
190	Different ratios in 20 S proteasomes and regulatory subunit complexes in two isoforms of the 26 S proteasome purified from rabbit skeletal muscle. FEBS Letters, 1993, 335, 207-212.	1.3	28
191	Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Nature, 1992, 357, 167-169.	13.7	112
192	Proteolysis, proteasomes and antigen presentation. Nature, 1992, 357, 375-379.	13.7	596
193	The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. FEBS Journal, 1992, 203, 9-23.	0.2	436
194	Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature, 1988, 331, 192-194.	13.7	415
195	Endocrine regulation of protein breakdown in skeletal muscle. Diabetes/metabolism Reviews, 1988, 4, 751-772.	0.2	175
196	Protein Breakdown and the Heat-Shock Response. , 1988, , 207-238.		22
197	Role of ATP hydrolysis in the degradation of proteins by protease la fromEscherichia coli. Journal of Cellular Biochemistry, 1986, 32, 187-191.	1.2	25
198	The Selective Degradation of Abnormal Proteins in Bacteria. , 1986, , 287-314.		30

#	Article	IF	CITATIONS
199	The ATP-dependent breakdown of proteins in mammalian mitochondria. Biochemical Society Transactions, 1985, 13, 290-293.	1.6	16
200	The role of increased proteolysis in the atrophy and arrest of proliferation in serum-deprived fibroblasts. Journal of Cellular Physiology, 1984, 121, 189-198.	2.0	34
201	Newly synthesized proteins are degraded by an ATP-stimulated proteolytic process in isolated pea chloroplasts. FEBS Letters, 1984, 166, 253-257.	1.3	97
202	Comparison of the control and pathways for degradation of the acetylcholine receptor and average protein in cultured muscle cells. Journal of Cellular Physiology, 1981, 107, 185-194.	2.0	37
203	ATP-stimulated endoprotease is associated with the cell membrane of E. coli. Nature, 1981, 290, 419-421.	13.7	45
204	E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature, 1981, 292, 652-654.	13.7	145
205	Effects of chymostatin and other proteinase inhibitors on protein breakdown and proteolytic activities in muscle. Biochemical Journal, 1980, 188, 213-220.	1.7	43
206	Regulation of protein degradation in skeletal muscle. Biochemical Society Transactions, 1980, 8, 497-497.	1.6	5
207	Studies of the ATP Dependence of Protein Degradation in Cells and Cell Extracts. Novartis Foundation Symposium, 1980, , 227-251.	1.2	6
208	The effect of protease inhibitors and decreased temperature on the degradation of different classes of proteins in cultured hepatocytes. Journal of Cellular Physiology, 1979, 101, 439-457.	2.0	164
209	Studies on the relationship between the degradative rates of proteins <i>in vivo</i> and their isoelectric points. Biochemical Journal, 1979, 178, 305-312.	3.2	47
210	Structural properties of rat serum proteins which correlate with their degradative rates in vivo. Nature, 1976, 262, 514-516.	13.7	22
211	EFFECTS OF USE AND DISUSE ON AMINO ACID TRANSPORT AND PROTEIN TURNOVER IN MUSCLE. Annals of the New York Academy of Sciences, 1974, 228, 190-201.	1.8	99
212	The apparent stimulation of proteolysis by adenosine triphosphate in tissue homogenates (<i>Short) Tj ETQq0 0</i>	0	verJock 10 Tf
213	Effects of Protease Inhibitors on Protein Breakdown and Enzyme Induction in Starving Escherichia coli. Nature: New Biology, 1971, 234, 51-52.	4.5	31
214	PROTEIN SYNTHESIS DURING WORK-INDUCED GROWTH OF SKELETAL MUSCLE. Journal of Cell Biology, 1968, 36, 653-658.	2.3	130
215	Protein Synthesis in Tonic and Phasic Skeletal Muscles. Nature, 1967, 216, 1219-1220.	13.7	124