## Suzanne Eaton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6376544/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Influence of Cell Mechanics, Cell-Cell Interactions, and Proliferation on Epithelial Packing.<br>Current Biology, 2007, 17, 2095-2104.                                   | 3.9  | 1,039     |
| 2  | Cell Flow Reorients the Axis of Planar Polarity in the Wing Epithelium of Drosophila. Cell, 2010, 142, 773-786.                                                              | 28.9 | 650       |
| 3  | Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature, 2005, 435, 58-65.                                                                           | 27.8 | 611       |
| 4  | Myosin II Dynamics Are Regulated by Tension in Intercalating Cells. Developmental Cell, 2009, 17, 736-743.                                                                   | 7.0  | 581       |
| 5  | Argosomes. Cell, 2001, 106, 633-645.                                                                                                                                         | 28.9 | 393       |
| 6  | Hexagonal Packing of Drosophila Wing Epithelial Cells by the Planar Cell Polarity Pathway.<br>Developmental Cell, 2005, 9, 805-817.                                          | 7.0  | 386       |
| 7  | The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation Genes and Development, 1992, 6, 2635-2645.     | 5.9  | 382       |
| 8  | Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing.<br>ELife, 2015, 4, e07090.                                              | 6.0  | 290       |
| 9  | Association of Sterol- and Glycosylphosphatidylinositol-linked Proteins with Drosophila Raft Lipid<br>Microdomains. Journal of Biological Chemistry, 1999, 274, 12049-12054. | 3.4  | 274       |
| 10 | Effects of diet and development on the <i>Drosophila</i> lipidome. Molecular Systems Biology, 2012, 8, 600.                                                                  | 7.2  | 240       |
| 11 | The Ankyrin Repeat Protein Diego Mediates Frizzled-Dependent Planar Polarization. Developmental<br>Cell, 2001, 1, 93-101.                                                    | 7.0  | 221       |
| 12 | Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid<br>Composition. PLoS Genetics, 2012, 8, e1002828.                                  | 3.5  | 209       |
| 13 | Cholesterol in signal transduction. Current Opinion in Cell Biology, 2000, 12, 193-203.                                                                                      | 5.4  | 207       |
| 14 | Repression of ci-D in posterior compartments of Drosophila by engrailed Genes and Development, 1990, 4, 1068-1077.                                                           | 5.9  | 203       |
| 15 | Roles for Rac1 and Cdc42 in planar polarization and hair outgrowth in the wing of Drosophila<br>Journal of Cell Biology, 1996, 135, 1277-1289.                               | 5.2  | 203       |
| 16 | CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium<br>Journal of Cell Biology, 1995, 131, 151-164.                            | 5.2  | 183       |
| 17 | Apical, basal, and lateral cues for epithelial polarization. Cell, 1995, 82, 5-8.                                                                                            | 28.9 | 176       |
| 18 | Endogenously Tagged Rab Proteins: A Resource to Study Membrane Trafficking in Drosophila.<br>Developmental Cell, 2015, 33, 351-365.                                          | 7.0  | 159       |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The endocytic pathway and formation of the Wingless morphogen gradient. Development (Cambridge),<br>2006, 133, 307-317.                                                                                             | 2.5  | 156       |
| 20 | Lipoprotein-Heparan Sulfate Interactions in the Hh Pathway. Developmental Cell, 2007, 13, 57-71.                                                                                                                    | 7.0  | 139       |
| 21 | Diego interacts with Prickle and Strabismus/Van Gogh to localize planar cell polarity complexes.<br>Development (Cambridge), 2004, 131, 4467-4476.                                                                  | 2.5  | 133       |
| 22 | Multiple DNA sequence elements are necessary for the function of an immunoglobulin heavy chain<br>promoter Proceedings of the National Academy of Sciences of the United States of America, 1987, 84,<br>7634-7638. | 7.1  | 126       |
| 23 | Epithelial Viscoelasticity Is Regulated by Mechanosensitive E-cadherin Turnover. Current Biology, 2019, 29, 578-591.e5.                                                                                             | 3.9  | 126       |
| 24 | Survival strategies of a sterol auxotroph. Development (Cambridge), 2010, 137, 3675-3685.                                                                                                                           | 2.5  | 125       |
| 25 | Planar polarization of Drosophila and vertebrate epithelia. Current Opinion in Cell Biology, 1997, 9,<br>860-866.                                                                                                   | 5.4  | 121       |
| 26 | Segmentation and Quantitative Analysis of Epithelial Tissues. Methods in Molecular Biology, 2016,<br>1478, 227-239.                                                                                                 | 0.9  | 120       |
| 27 | Multiple roles for lipids in the Hedgehog signalling pathway. Nature Reviews Molecular Cell Biology, 2008, 9, 437-445.                                                                                              | 37.0 | 118       |
| 28 | Planar cell polarization requires Widerborst, a B′ regulatory subunit of protein phosphatase 2A.<br>Development (Cambridge), 2002, 129, 3493-3503.                                                                  | 2.5  | 113       |
| 29 | TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics.<br>ELife, 2016, 5, .                                                                                          | 6.0  | 111       |
| 30 | Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. Nature Communications, 2018, 9, 4620.                                                                | 12.8 | 103       |
| 31 | The Drosophila STE20-like kinase Misshapen is required downstream of the Frizzled receptor in planar polarity signaling. EMBO Journal, 1999, 18, 4669-4678.                                                         | 7.8  | 98        |
| 32 | Establishment of Global Patterns of Planar Polarity during Growth of the Drosophila Wing<br>Epithelium. Current Biology, 2012, 22, 1296-1301.                                                                       | 3.9  | 98        |
| 33 | Secretion and Signaling Activities of Lipoprotein-Associated Hedgehog and Non-Sterol-Modified Hedgehog in Flies and Mammals. PLoS Biology, 2013, 11, e1001505.                                                      | 5.6  | 91        |
| 34 | Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes and Development, 2014, 28, 2636-2651.                                                           | 5.9  | 88        |
| 35 | Megalin-dependent Yellow endocytosis restricts melanization in the Drosophila cuticle. Development (Cambridge), 2011, 138, 149-158.                                                                                 | 2.5  | 87        |
| 36 | Patched regulates Smoothened trafficking using lipoprotein-derived lipids. Development (Cambridge), 2009, 136, 4111-4121.                                                                                           | 2.5  | 85        |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Local Increases in Mechanical Tension Shape Compartment Boundaries by Biasing Cell Intercalations.<br>Current Biology, 2014, 24, 1798-1805.                               | 3.9  | 85        |
| 38 | Lipoprotein Particles Cross the Blood–Brain Barrier in <i>Drosophila</i> . Journal of Neuroscience, 2010, 30, 10441-10447.                                                | 3.6  | 84        |
| 39 | Cell dynamics underlying oriented growth of the <i>Drosophila</i> wing imaginal disc. Development<br>(Cambridge), 2017, 144, 4406-4421.                                   | 2.5  | 84        |
| 40 | Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling. ELife, 2014, 3, .                                  | 6.0  | 81        |
| 41 | Retromer Retrieves Wntless. Developmental Cell, 2008, 14, 4-6.                                                                                                            | 7.0  | 80        |
| 42 | Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nature Communications, 2015, 6, 8872.                   | 12.8 | 79        |
| 43 | Endocannabinoids are conserved inhibitors of the Hedgehog pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3415-3420. | 7.1  | 68        |
| 44 | The Balance of Prickle/Spiny-Legs Isoforms Controls the Amount of Coupling between Core and Fat PCP Systems. Current Biology, 2014, 24, 2111-2123.                        | 3.9  | 67        |
| 45 | Lipoproteins and their receptors in embryonic development: more than cholesterol clearance.<br>Development (Cambridge), 2007, 134, 3239-3249.                             | 2.5  | 64        |
| 46 | Release and trafficking of lipid-linked morphogens. Current Opinion in Genetics and Development, 2006, 16, 17-22.                                                         | 3.3  | 62        |
| 47 | A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Development and Survival in the Cold. Developmental Cell, 2018, 46, 781-793.e4.                  | 7.0  | 61        |
| 48 | Cargo Sorting in the Endocytic Pathway: A Key Regulator of Cell Polarity and Tissue Dynamics. Cold<br>Spring Harbor Perspectives in Biology, 2014, 6, a016899-a016899.    | 5.5  | 60        |
| 49 | The Ecdysteroidome of <i>Drosophila</i> : influence of diet and development. Development<br>(Cambridge), 2015, 142, 3758-68.                                              | 2.5  | 59        |
| 50 | Triangles bridge the scales: Quantifying cellular contributions to tissue deformation. Physical Review E, 2017, 95, 032401.                                               | 2.1  | 58        |
| 51 | Cell flow and tissue polarity patterns. Current Opinion in Genetics and Development, 2011, 21, 747-752.                                                                   | 3.3  | 56        |
| 52 | Cell biology of planar polarity transmission in the Drosophila wing. Mechanisms of Development, 2003, 120, 1257-1264.                                                     | 1.7  | 53        |
| 53 | Clustering and Negative Feedback by Endocytosis in Planar Cell Polarity Signaling Is Modulated by Ubiquitinylation of Prickle. PLoS Genetics, 2015, 11, e1005259.         | 3.5  | 51        |
| 54 | Transcriptional Controlling Elements in the Immunoglobulin and T Cell Receptor Loci. Advances in<br>Immunology, 1988, 43, 235-275.                                        | 2.2  | 49        |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Imaging Drosophila Pupal Wing Morphogenesis. Methods in Molecular Biology, 2008, 420, 265-275.                                                                                             | 0.9  | 46        |
| 56 | A novel function for the Rab5 effector Rabenosyn-5 in planar cell polarity. Development (Cambridge),<br>2010, 137, 2353-2364.                                                              | 2.5  | 44        |
| 57 | Emergence of tissue shape changes from collective cell behaviours. Seminars in Cell and Developmental Biology, 2017, 67, 103-112.                                                          | 5.0  | 43        |
| 58 | Staccato/Unc-13-4 controls secretory lysosome-mediated lumen fusion during epithelial<br>tubeÂanastomosis. Nature Cell Biology, 2016, 18, 727-739.                                         | 10.3 | 42        |
| 59 | Changes in morphology and function of adrenal cortex in mice fed a high-fat diet. International<br>Journal of Obesity, 2015, 39, 321-330.                                                  | 3.4  | 41        |
| 60 | Apico-basal cell compression regulates Lamin A/C levels in epithelial tissues. Nature Communications, 2021, 12, 1756.                                                                      | 12.8 | 40        |
| 61 | Active dynamics of tissue shear flow. New Journal of Physics, 2017, 19, 033006.                                                                                                            | 2.9  | 39        |
| 62 | PreMosa: extracting 2D surfaces from 3D microscopy mosaics. Bioinformatics, 2017, 33, 2563-2569.                                                                                           | 4.1  | 34        |
| 63 | Hedgehog Signaling Strength Is Orchestrated by the <i>mir-310</i> Cluster of MicroRNAs in Response to Diet. Genetics, 2016, 202, 1167-1183.                                                | 2.9  | 33        |
| 64 | Self-organized patterning of cell morphology via mechanosensitive feedback. ELife, 2021, 10, .                                                                                             | 6.0  | 31        |
| 65 | Purified µEBP-E Binds to Immunoglobulin Enhancers and Promoters. Molecular and Cellular Biology,<br>1988, 8, 4972-4980.                                                                    | 2.3  | 24        |
| 66 | Wnt signal transduction: more than one way to skin a (β-)cat?. Trends in Cell Biology, 1996, 6, 287-290.                                                                                   | 7.9  | 16        |
| 67 | Microsomal triacylglycerol transfer protein (MTP) is required to expand tracheal lumen in<br><i>Drosophila</i> in a cell-autonomous manner. Journal of Cell Science, 2012, 125, 6038-6048. | 2.0  | 16        |
| 68 | Rabâ€mediated trafficking in the secondary cells of <i>Drosophila</i> male accessory glands and its role in fecundity. Traffic, 2019, 20, 137-151.                                         | 2.7  | 16        |
| 69 | Glycolysis regulates Hedgehog signalling via the plasma membrane potential. EMBO Journal, 2020, 39, e101767.                                                                               | 7.8  | 15        |
| 70 | Embryo morphogenesis: getting down to cells and molecules. Development (Cambridge), 2003, 130, 4229-4233.                                                                                  | 2.5  | 14        |
| 71 | Range of SHH signaling in adrenal gland is limited by membrane contact to cells with primary cilia.<br>Journal of Cell Biology, 2020, 219, .                                               | 5.2  | 12        |
| 72 | Lipid Discovery by Combinatorial Screening and Untargeted LC-MS/MS. Scientific Reports, 2016, 6, 27920.                                                                                    | 3.3  | 10        |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Lipoproteins and <scp>H</scp> edgehog signalling – possible implications for the adrenal gland function. European Journal of Clinical Investigation, 2013, 43, 1178-1183.           | 3.4 | 6         |
| 74 | A local insulin reservoir in Drosophila alpha cell homologs ensures developmental progression under nutrient shortage. Current Biology, 2022, 32, 1788-1797.e5.                     | 3.9 | 6         |
| 75 | RNAi in the Hedgehog Signaling Pathway: pFRiPE, a Vector for Temporally and Spatially Controlled RNAi in Drosophila. Methods in Molecular Biology, 2007, 397, 115-128.              | 0.9 | 5         |
| 76 | Microsomal triacylglycerol transfer protein (MTP) is required to expand tracheal lumen in<br>Drosophila in a cell-autonomous manner. Development (Cambridge), 2013, 140, e708-e708. | 2.5 | 0         |
| 77 | Transcriptional Regulation of Immunoglobulin Heavy Chain and T-Cell Receptor Beta Chain Genes. ,<br>1989, 254, 77-86.                                                               |     | 0         |
|    |                                                                                                                                                                                     |     |           |