
Debasis Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6375403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pre-Exposure to Stress-Inducing Agents Increase the Anticancer Efficacy of Focused Ultrasound against Aggressive Prostate Cancer Cells. Antioxidants, 2022, 11, 341.	5.1	3
2	Osteopathic Manipulative Medicine: A Brief Review of the Hands-On Treatment Approaches and Their Therapeutic Uses. Medicines (Basel, Switzerland), 2022, 9, 33.	1.4	12
3	Latent HIV-Exosomes Induce Mitochondrial Hyperfusion Due to Loss of Phosphorylated Dynamin-Related Protein 1 in Brain Endothelium. Molecular Neurobiology, 2021, 58, 2974-2989.	4.0	15
4	Latent HIVâ€I Exosomes Induce Mitochondrial Hyperfusion due to Loss of Phosphorylated Dynaminâ€related Protein 1 in Brain Endothelium. FASEB Journal, 2021, 35, .	0.5	0
5	Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. , 2021, 4, 96-124.		6
6	A New Humanized Mouse Model Mimics Humans in Lacking $\hat{I}\pm$ -Gal Epitopes and Secreting Anti-Gal Antibodies. Journal of Immunology, 2020, 204, 1998-2005.	0.8	7
7	Bardoxolone-Methyl (CDDO-Me) Suppresses Androgen Receptor and Its Splice-Variant AR-V7 and Enhances Efficacy of Enzalutamide in Prostate Cancer Cells. Antioxidants, 2020, 9, 68.	5.1	19
8	The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs. Medicines (Basel,) Tj ETQqO 0 0 rgBT /(Dv e r4ock 1	0 18 50 457
9	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	28.9	152
10	The Antiretroviral Agent Nelfinavir Mesylate. Arthritis and Rheumatology, 2018, 70, 115-126.	5.6	15
11	Mesenchymal stem cells are attracted to latent HIV-1-infected cells and enable virus reactivation via a non-canonical PI3K-NFκB signaling pathway. Scientific Reports, 2018, 8, 14702.	3.3	24
12	High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer. Scientific Reports, 2018, 8, 8161.	3.3	199
13	Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells: Advocating a potent pharmaceutical combination against castration-resistant prostate cancer. Oncology Reports, 2017, 38, 2774-2786.	2.6	30
14	Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. Cancer Letters, 2017, 408, 73-81.	7.2	158
15	PRL‑3 increases the aggressive phenotype of prostate cancer cells inÃ ⁻ ¿¹⁄2vitro and its expression correlates with high-grade prostate tumors in patients. International Journal of Oncology, 2017, 52, 402-412.	3.3	6
16	Estradiol-ERβ2 signaling axis confers growth and migration of CRPC cells through TMPRSS2-ETV5 gene fusion. Oncotarget, 2017, 8, 62820-62833.	1.8	16
17	Sulforaphane increases the efficacy of anti-androgens by rapidly decreasing androgen receptor levels in prostate cancer cells. International Journal of Oncology, 2016, 49, 1609-1619.	3.3	19

¹⁸Tripping on TRIB3 at the junction of health, metabolic dysfunction and cancer. Biochimie, 2016, 124,
34-52.2.645

DEBASIS MONDAL

#	Article	IF	CITATIONS
19	Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells. Biochimie, 2016, 124, 53-64.	2.6	39
20	An Ex Vivo Tissue Culture Model for Anti-angiogenic Drug Testing. Methods in Molecular Biology, 2016, 1464, 85-95.	0.9	8
21	Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 26533.	12.2	51
22	Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections. Frontiers in Microbiology, 2015, 6, 948.	3.5	15
23	An Ex Vivo Model for Anti-Angiogenic Drug Testing on Intact Microvascular Networks. PLoS ONE, 2015, 10, e0119227.	2.5	23
24	Doxorubicin resistance in breast cancer is driven by light at nightâ€induced disruption of the circadian melatonin signal. Journal of Pineal Research, 2015, 59, 60-69.	7.4	82
25	Selective targeting of FAK–Pyk2 axis by alpha-naphthoflavone abrogates doxorubicin resistance in breast cancer cells. Cancer Letters, 2015, 362, 25-35.	7.2	28
26	Nrf1 and Nrf2 Transcription Factors Regulate Androgen Receptor Transactivation in Prostate Cancer Cells. PLoS ONE, 2014, 9, e87204.	2.5	59
27	Neoplastic Reprogramming of Patient-Derived Adipose Stem Cells by Prostate Cancer Cell-Associated Exosomes. Stem Cells, 2014, 32, 983-997.	3.2	240
28	Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer Cells. PLoS ONE, 2014, 9, e103109.	2.5	51
29	A systematic approach to document cyclotide distribution in plant species from genomic, transcriptomic, and peptidomic analysis. Biopolymers, 2013, 100, 433-437.	2.4	26
30	Cycloviolacin O2 (CyO2) suppresses productive infection and augments the antiviral efficacy of nelfinavir in HIVâ€1 infected monocytic cells. Biopolymers, 2013, 100, 471-479.	2.4	26
31	Specific Increase in MDR1 Mediated Drug-Efflux in Human Brain Endothelial Cells following Co-Exposure to HIV-1 and Saquinavir. PLoS ONE, 2013, 8, e75374.	2.5	17
32	Nelfinavir suppresses insulin signaling and nitric oxide production by human aortic endothelial cells: protective effects of thiazolidinediones. Ochsner Journal, 2013, 13, 76-90.	1.1	6
33	Naturally Occurring Cyclic Peptides and Their Potential Application in HIV Therapeutics. Journal of Biologically Active Products From Nature, 2012, 2, 1-29.	0.3	0
34	Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection. Retrovirology, 2011, 8, 3.	2.0	23
35	Examination of the Neuroprotective Effects of Various Formulations of Curcumin Against Methylmercury induced Toxicity in Human Neuroblastoma (SHâ€&Y5Y) Cells. FASEB Journal, 2011, 25, 1004.6.	0.5	1
36	Anticancer and chemosensitizing abilities of cycloviolacin O2 from <i>Viola odorata</i> and psyle cyclotides from <i>Psychotria leptothyrsa</i> . Biopolymers, 2010, 94, 617-625.	2.4	95

DEBASIS MONDAL

#	Article	IF	CITATIONS
37	The Nrf1 and Nrf2 Balance in Oxidative Stress Regulation and Androgen Signaling in Prostate Cancer Cells. Cancers, 2010, 2, 1354-1378.	3.7	26
38	Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen species. Experimental Biology and Medicine, 2010, 235, 751-760.	2.4	113
39	HIV-1 Protease Inhibitor Induced Oxidative Stress Suppresses Glucose Stimulated Insulin Release: Protection with Thymoquinone. Experimental Biology and Medicine, 2009, 234, 442-453.	2.4	67
40	Montelukast Is a Potent and Durable Inhibitor of Multidrug Resistance Protein 2-Mediated Efflux of Taxol and Saquinavir. Biological and Pharmaceutical Bulletin, 2009, 32, 2002-2009.	1.4	19
41	Monitoring the antiâ€cancer effects and chemosensitizing abilities of novel cyclotides from Psychotria leptothyrsa. FASEB Journal, 2009, 23, 756.10.	0.5	1
42	MRP (ABCC) Transporters-Mediated Efflux of Anti-HIV Drugs, Saquinavir and Zidovudine, from Human Endothelial Cells. Experimental Biology and Medicine, 2008, 233, 1149-1160.	2.4	68
43	HIV†protease inhibitors suppress insulin secretion in pancreatic \hat{I}^2 cells : role of oxidative stress and endoplasmic reticulum stress and protection by thymoquinone (TQ). FASEB Journal, 2008, 22, 1131.2.	0.5	0
44	Vascular endothelial cells from different tissues express functional MDRâ€1 (Pâ€gp) and MRP membrane transporters which efflux HIVâ€1 protease inhibitors: possible role in persistence of perivascular reservoirs of HIVâ€1. FASEB Journal, 2006, 20, A1127.	0.5	0
45	The HIV-1 Tat Protein Enhances Megakaryocytic Commitment of K562 Cells by Facilitating CREB Transcription Factor Coactivation by CBP. Experimental Biology and Medicine, 2005, 230, 872-884.	2.4	7
46	The HIV-1 Tat Protein Selectively Enhances CXCR4 and Inhibits CCR5 Expression in Megakaryocytic K562 Cells. Experimental Biology and Medicine, 2005, 230, 631-644.	2.4	12
47	HAART Drugs Induce Oxidative Stress in Human Endothelial Cells and Increase Endothelial Recruitment of Mononuclear Cells: Exacerbation by Inflammatory Cytokines and Amelioration by Antioxidants. Cardiovascular Toxicology, 2004, 4, 287-302.	2.7	92
48	Suppression of Clonogenic Potential of Human Bone Marrow Mesenchymal Stem Cells by HIV Type 1: Putative Role of HIV Type 1 Tat Protein and Inflammatory Cytokines. AIDS Research and Human Retroviruses, 2002, 18, 917-931.	1.1	38
49	Synergistic Antiadipogenic Effects of HIV Type 1 Protease Inhibitors with Tumor Necrosis Factorα: Suppression of Extracellular Insulin Action Mediated by Extracellular Matrix-Degrading Proteases. AIDS Research and Human Retroviruses, 2001, 17, 1569-1584.	1.1	23
50	Effect of HIV Type 1 Tat Protein on Butyric Acid-Induced Differentiation in a Hematopoietic Progenitor Cell Line. AIDS Research and Human Retroviruses, 1996, 12, 1529-1536.	1.1	11