Dan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/637407/publications.pdf Version: 2024-02-01

DAN CHEN

#	Article	IF	CITATIONS
1	Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. Journal of Hazardous Materials, 2016, 310, 179-187.	12.4	106
2	Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing. Applied Microbiology and Biotechnology, 2015, 99, 10829-10837.	3.6	83
3	Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature. Chemosphere, 2018, 193, 337-342.	8.2	80
4	A high-throughput sequencing study of bacterial communities in an autohydrogenotrophic denitrifying bio-ceramsite reactor. Process Biochemistry, 2015, 50, 1904-1910.	3.7	65
5	Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter. Bioprocess and Biosystems Engineering, 2016, 39, 277-284.	3.4	51
6	Microbial community and metabolism activity in a bioelectrochemical denitrification system under long-term presence of p-nitrophenol. Bioresource Technology, 2016, 218, 189-195.	9.6	44
7	Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor. Water Science and Technology, 2014, 69, 2417-2422.	2.5	35
8	Toxic effects of vanadium (V) on a combined autotrophic denitrification system using sulfur and hydrogen as electron donors. Bioresource Technology, 2018, 264, 319-326.	9.6	34
9	Bacterial communities in a novel three-dimensional bioelectrochemical denitrification system: the effects of pH. Applied Microbiology and Biotechnology, 2016, 100, 6805-6813.	3.6	29
10	Culture of denitrifying phosphorus removal granules with different influent wastewater. Desalination and Water Treatment, 2016, 57, 17247-17254.	1.0	27
11	Response of a three dimensional bioelectrochemical denitrification system to the long-term presence of graphene oxide. Bioresource Technology, 2016, 214, 24-29.	9.6	27
12	Cr(<scp>vi</scp>) removal by combined redox reactions and adsorption using pectin-stabilized nanoscale zero-valent iron for simulated chromium contaminated water. RSC Advances, 2015, 5, 65068-65073.	3.6	26
13	Removal of phosphate and hexavalent chromium from aqueous solutions by engineered waste eggshell. RSC Advances, 2016, 6, 35332-35339.	3.6	20
14	Application of humin-immobilized biocathode in a continuous-flow bioelectrochemical system for nitrate removal at low temperature. Environmental Research, 2021, 202, 111677.	7.5	20
15	pH control of an upflow pyrite-oxidizing denitrifying bioreactor via electrohydrogenesis. Bioresource Technology, 2019, 281, 41-47.	9.6	18
16	Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor. Desalination and Water Treatment, 2016, 57, 3482-3488.	1.0	15
17	High nitrate removal by autohydrogenotrophic bacteria in a biofilm-electrode reactor. Desalination and Water Treatment, 0, , 1-9.	1.0	12
18	Reduction of highly concentrated phosphate from aqueous solution using pectin-nanoscale zerovalent iron (PNZVI). Water Science and Technology, 2016, 73, 2689-2696.	2.5	11

Dan Chen

#	Article	IF	CITATIONS
19	Enhanced low-temperature denitrification by microbial consortium using solid-phase humin. Environmental Research, 2021, 196, 110392.	7.5	11
20	Characteristics of nitrate removal in a bio-ceramsite reactor by aerobic denitrification. Environmental Technology (United Kingdom), 2015, 36, 1457-1463.	2.2	10
21	Effects of temperature on aerobic denitrification in a bio-ceramsite reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3236-3241.	2.3	10
22	Effective biodegradation of nitrate, Cr(VI) and p-fluoronitrobenzene by a novel three dimensional bioelectrochemical system. Bioresource Technology, 2016, 203, 370-373.	9.6	9
23	Redox reaction between solid-phase humins and Fe(III) compounds: Toward a further understanding of the redox properties of humin and its possible environmental effects. Journal of Environmental Management, 2022, 310, 114793.	7.8	9
24	Nitrate removal by a combined bioelectrochemical and sulfur autotrophic denitrification (CBSAD) system at low temperatures. Desalination and Water Treatment, 2016, 57, 19411-19417.	1.0	8
25	Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron. Water Science and Technology, 2017, 76, 1827-1832.	2.5	8
26	Effect of current density on denitrification performance and microbial community spectra in a pyrite-oxidizing bioelectrochemical system (PBES). Journal of Water Process Engineering, 2021, 42, 102110.	5.6	8
27	Enhanced microbial nitrate reduction using natural manganese oxide ore as an electron donor. Journal of Environmental Management, 2022, 306, 114497.	7.8	8
28	Characteristics of Nitrate Reduction Using Fe (II) as Electron Donor in Activated Sludge. Geomicrobiology Journal, 2016, 33, 505-512.	2.0	7
29	Odor removal by powdered activated carbon (PAC) in low turbidity drinking water. Water Science and Technology: Water Supply, 2016, 16, 1017-1023.	2.1	6
30	Removal of color caused by dissolved organic matter from groundwater by electroflotation-filtration continuous flow reactor and optimization by response surface methodology. Desalination and Water Treatment, 2016, 57, 754-764.	1.0	1