Naomi R Latorraca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6372529/publications.pdf

Version: 2024-02-01

26 papers 4,095 citations

304743

22

h-index

580821 25 g-index

32 all docs 32 docs citations

times ranked

32

4599 citing authors

#	Article	IF	CITATIONS
1	Mechanistic basis for ubiquitin modulation of a protein energy landscape. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
2	How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling. Cell, 2020, 183, 1813-1825.e18.	28.9	100
3	Molecular Mechanism of Biased Signaling in a Prototypical G-protein-coupled Receptor. Biophysical Journal, 2020, 118, 162a.	0.5	4
4	Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science, 2020, 367, 888-892.	12.6	150
5	Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor. Science, 2020, 367, 881-887.	12.6	168
6	Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature, 2020, 579, 297-302.	27.8	238
7	Structural and functional characterization of G protein–coupled receptors with deep mutational scanning. ELife, 2020, 9, .	6.0	91
8	Structure and mechanism of the cation–chloride cotransporter NKCC1. Nature, 2019, 572, 488-492.	27.8	89
9	Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature, 2019, 571, 284-288.	27.8	154
10	Conformational transitions of a neurotensin receptorÂ1–Gi1Âcomplex. Nature, 2019, 572, 80-85.	27.8	199
11	Diverse GPCRs exhibit conserved water networks for stabilization and activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3288-3293.	7.1	116
12	Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex. Cell, 2019, 176, 448-458.e12.	28.9	323
13	Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations. Cell, 2019, 176, 468-478.e11.	28.9	194
14	Quantitative mapping of protein-peptide affinity landscapes using spectrally encoded beads. ELife, 2019, 8, .	6.0	53
15	G _i - and G _s -coupled GPCRs show different modes of G-protein binding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2383-2388.	7.1	64
16	Molecular mechanism of GPCR-mediated arrestin activation. Nature, 2018, 557, 452-456.	27.8	166
17	Catalytic activation of \hat{I}^2 -arrestin by GPCRs. Nature, 2018, 557, 381-386.	27.8	175
18	Structure of the Âμ-opioid receptor–Gi protein complex. Nature, 2018, 558, 547-552.	27.8	527

#	Article	IF	CITATIONS
19	Mechanism of Substrate Translocation in an Alternating Access Transporter. Cell, 2017, 169, 96-107.e12.	28.9	89
20	Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors. Cell, 2017, 170, 457-469.e13.	28.9	344
21	Mechanism of intracellular allosteric \hat{l}^2 2AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548, 480-484.	27.8	148
22	GPCR Dynamics: Structures in Motion. Chemical Reviews, 2017, 117, 139-155.	47.7	561
23	Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations. PLoS Computational Biology, 2016, 12, e1004746.	3.2	85
24	Continuum Approaches to Understanding Ion and Peptide Interactions with the Membrane. Journal of Membrane Biology, 2014, 247, 395-408.	2.1	10
25	Membrane bending is critical for the stability of voltage sensor segments in the membrane. Journal of General Physiology, 2012, 140, 55-68.	1.9	29
26	Corrole–protein interactions in H-NOX and HasA. RSC Chemical Biology, 0, , .	4.1	2