Zdenek Dvorak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6371597/publications.pdf

Version: 2024-02-01

516710 552781 1,132 135 16 26 citations g-index h-index papers 138 138 138 491 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Three-coloring triangle-free graphs on surfaces VII. A linear-time algorithm. Journal of Combinatorial Theory Series B, 2022, 152, 483-504.	1.0	3
2	Electric or Internal Combustion Engines for Passenger Cars? - Environmental and Economic Aspects. Communications - Scientific Letters of the University of Zilina, 2022, 24, B49-B58.	0.6	1
3	LEAN MANUFACTURING vs COVID-19. MEST Journal, 2022, 10, 1-11.	0.3	5
4	Characterization of 4-critical triangle-free toroidal graphs. Journal of Combinatorial Theory Series B, 2022, 154, 336-369.	1.0	0
5	Bounded Degree Conjecture Holds Precisely for c-Crossing-Critical Graphs with c ≠12. Combinatorica, 2022, 42, 701-728.	1.2	1
6	Triangle-free planar graphs with at most <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:msup><n 156,="" 2022,="" 294-298.<="" 3-colorings.="" b,="" combinatorial="" journal="" of="" series="" td="" theory=""><td>nml:mrow:</td><td>> < mml:mi>n <</td></n></mml:msup></mml:mrow></mml:msup></mml:math>	nml:mrow:	> < mml:mi>n <
7	Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies. Journal of Combinatorial Theory Series B, 2021, 150, 244-269.	1.0	6
8	Flexibility of triangleâ€free planar graphs. Journal of Graph Theory, 2021, 96, 619-641.	0.9	4
9	A note on sublinear separators and expansion. European Journal of Combinatorics, 2021, 93, 103273.	0.8	0
10	Bounding the number of cycles in a graph in terms of its degree sequence. European Journal of Combinatorics, 2021, 91, 103206.	0.8	0
11	Three-coloring triangle-free graphs on surfaces IV. Bounding face sizes of 4-critical graphs. Journal of Combinatorial Theory Series B, 2021, 150, 270-304.	1.0	4
12	Coloring near-quadrangulations of the cylinder and the torus. European Journal of Combinatorics, 2021, 93, 103258.	0.8	1
13	Singleâ€conflict colouring. Journal of Graph Theory, 2021, 97, 148-160.	0.9	8
14	Safety indicators as a basis for increasing the resilience of critical infrastructure. Haditechnika, 2021, 55, 25-30.	0.0	0
15	Notes on Graph Product Structure Theory. MATRIX Book Series, 2021, , 513-533.	0.2	6
16	Sublinear Separators in Intersection Graphs of Convex Shapes. SIAM Journal on Discrete Mathematics, 2021, 35, 1149-1164.	0.8	5
17	Interval Representation of Balanced Separators in Graphs Avoiding a Minor. Trends in Mathematics, 2021, , 829-834.	0.1	0
18	Cyclic coloring of plane graphs with maximum face size 16 and 17. European Journal of Combinatorics, 2021, 94, 103287.	0.8	3

#	Article	IF	CITATIONS
19	A Thomassen-type method for planar graph recoloring. European Journal of Combinatorics, 2021, 95, 103319.	0.8	5
20	Methodological Framework for Resilience Assessment of Electricity Infrastructure in Conditions of Slovak Republic. International Journal of Environmental Research and Public Health, 2021, 18, 8286.	2.6	2
21	\$(3a:a)\$-List-Colorability of Embedded Graphs of Girth at Least Five. SIAM Journal on Discrete Mathematics, 2020, 34, 2137-2165.	0.8	0
22	Three-coloring triangle-free graphs on surfaces III. Graphs of girth five. Journal of Combinatorial Theory Series B, 2020, 145, 376-432.	1.0	7
23	Additive non-approximability of chromatic number in proper minor-closed classes. Journal of Combinatorial Theory Series B, 2020, , .	1.0	0
24	Irreducible 4-critical triangle-free toroidal graphs. European Journal of Combinatorics, 2020, 88, 103112.	0.8	2
25	1-Subdivisions, the Fractional Chromatic Number and the Hall Ratio. Combinatorica, 2020, 40, 759-774.	1.2	1
26	Qualitative Approach to Environmental Risk Assessment in Transport. International Journal of Environmental Research and Public Health, 2020, 17, 5494.	2.6	25
27	Integral approach to assessing the criticality of railway infrastructure elements. International Journal of Critical Infrastructures, 2020, 16, 107.	0.2	13
28	Flexibility of planar graphs of girth at least six. Journal of Graph Theory, 2020, 95, 457-466.	0.9	4
29	Fractional Coloring of Planar Graphs of Girth Five. SIAM Journal on Discrete Mathematics, 2020, 34, 538-555.	0.8	1
30	IDENTIFYING CRITICAL ELEMENTS OF ROAD INFRASTRUCTURE USING CASCADING IMPACT ASSESSMENT. Transport, 2020, 35, 300-314.	1.2	8
31	Transport Infrastructures Safety and Security. Advances in Information Security, Privacy, and Ethics Book Series, 2020, , 31-62.	0.5	0
32	Organization of Damaged Road Rehabilitation in the Village of Rybany. Lecture Notes in Intelligent Transportation and Infrastructure, 2020, , 466-473.	0.5	0
33	Planar graphs without cycles of length 4 or 5 are(11:3)-colorable. European Journal of Combinatorics, 2019, 82, 102996.	0.8	3
34	Map of traffic accidents. Transportation Research Procedia, 2019, 40, 1418-1425.	1.5	6
35	Exponentially Many Nowhere-Zero â, 3-, â, 4-, and â, 6-Flows. Combinatorica, 2019, 39, 1237-1253.	1.2	2
36	Effect of a power failure on rail transport. Transportation Research Procedia, 2019, 40, 1289-1296.	1.5	4

3

#	Article	IF	Citations
37	Objectification of Criteria for a Critical Infrastructure Elements in the Rail Transport Sub-sector. Transportation Research Procedia, 2019, 40, 1349-1355.	1.5	2
38	Improving the recovery system of damaged roads due to safety. Transportation Research Procedia, 2019, 40, 1305-1310.	1.5	0
39	List coloring with requests. Journal of Graph Theory, 2019, 92, 191-206.	0.9	8
40	Treewidth of graphs with balanced separations. Journal of Combinatorial Theory Series B, 2019, 137, 137-144.	1.0	6
41	On distance â€dominating and â€independent sets in sparse graphs. Journal of Graph Theory, 2019, 91, 162-173.	0.9	9
42	Triangle-free planar graphs with small independence number. European Journal of Combinatorics, 2019, 76, 88-103.	0.8	0
43	Triangle-free planar graphs with the smallest independence number. Journal of Graph Theory, 2019, 90, 443-454.	0.9	O
44	Fine Structure of 4-Critical Triangle-Free Graphs III. General Surfaces. SIAM Journal on Discrete Mathematics, 2018, 32, 94-105.	0.8	6
45	Induced subdivisions and bounded expansion. European Journal of Combinatorics, 2018, 69, 143-148.	0.8	7
46	Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8. Journal of Combinatorial Theory Series B, 2018, 129, 38-54.	1.0	112
47	Complete graph immersions and minimum degree. Journal of Graph Theory, 2018, 88, 211-221.	0.9	11
48	Treewidth of Grid Subsets. Combinatorica, 2018, 38, 1337-1352.	1.2	5
49	Fine Structure of 4-Critical Triangle-Free Graphs I. Planar Graphs with Two Triangles and 3-Colorability of Chains. SIAM Journal on Discrete Mathematics, 2018, 32, 1775-1805.	0.8	0
50	On classes of graphs with strongly sublinear separators. European Journal of Combinatorics, 2018, 71, 1-11.	0.8	4
51	Three-coloring triangle-free graphs on surfaces II. 4-critical graphs in a disk. Journal of Combinatorial Theory Series B, 2018, 132, 1-46.	1.0	6
52	5-choosability of graphs with crossings far apart. Journal of Combinatorial Theory Series B, 2017, 123, 54-96. Exponentially many nowhere-zero symplemeth xmlps:mml="http://www.w3.org/1998/Math/Math/ML"	1.0	6
53	altimg="si1.gif" overflow="scroll"> <mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:msub><mml:mi< td=""><td>ıml:msub> 0.4</td><td>-</td></mml:mi<></mml:msub></mml:msub>	ıml:msub> 0.4	-
54	mathvariant="double-struck">Z <mml:mrow><mml:mrow>Fine Structure of 4-Critical Triangle-Free Graphs II. Planar Triangle-Free Graphs with Two Precolored 4-Cycles. SIAM Journal on Discrete Mathematics, 2017, 31, 865-874.</mml:mrow></mml:mrow>	o.8	-

#	Article	IF	Citations
55	Irreducible 4-critical triangle-free toroidal graphs. Electronic Notes in Discrete Mathematics, 2017, 61, 383-389.	0.4	1
56	Assessment of Critical Infrastructure Elements in Transport. Procedia Engineering, 2017, 187, 548-555.	1.2	33
57	Density of 5/2-critical graphs. Combinatorica, 2017, 37, 863-886.	1.2	11
58	Large Independent Sets in Triangle-Free Planar Graphs. SIAM Journal on Discrete Mathematics, 2017, 31, 1355-1373.	0.8	7
59	5-list-coloring planar graphs with distant precolored vertices. Journal of Combinatorial Theory Series B, 2017, 122, 311-352.	1.0	5
60	Do Triangle-Free Planar Graphs have Exponentially Many \$3\$-Colorings?. Electronic Journal of Combinatorics, 2017, 24, .	0.4	3
61	A Structure Theorem for Strong Immersions. Journal of Graph Theory, 2016, 83, 152-163.	0.9	7
62	Strongly Sublinear Separators and Polynomial Expansion. SIAM Journal on Discrete Mathematics, 2016, 30, 1095-1101.	0.8	25
63	Sublinear separators, fragility and subexponential expansion. European Journal of Combinatorics, 2016, 52, 103-119.	0.8	13
64	Software Support for Railway Traffic Simulation under Restricted Conditions of the Rail Section. Procedia Engineering, 2016, 134, 245-255.	1.2	12
65	Three-coloring triangle-free graphs on surfaces I. Extending a coloring to a disk with one triangle. Journal of Combinatorial Theory Series B, 2016, 120, 1-17.	1.0	4
66	Crossing Numbers of Periodic Graphs. Journal of Graph Theory, 2016, 83, 34-43.	0.9	3
67	Immersion in four-edge-connected graphs. Journal of Combinatorial Theory Series B, 2016, 116, 208-218.	1.0	5
68	Packing six T-joins in plane graphs. Journal of Combinatorial Theory Series B, 2016, 116, 287-305.	1.0	6
69	3â€Coloring Triangleâ€Free Planar Graphs with a Precolored 8â€Cycle. Journal of Graph Theory, 2015, 80, 98-111.	0.9	9
70	Fractional Coloring of Triangle-Free Planar Graphs. Electronic Journal of Combinatorics, 2015, 22, .	0.4	7
71	Subcubic triangle-free graphs have fractional chromatic number at most 14/5. Journal of the London Mathematical Society, 2014, 89, 641-662.	1.0	9
72	4-Critical Graphs on Surfaces Without Contractible \$(le!4)\$-Cycles. SIAM Journal on Discrete Mathematics, 2014, 28, 521-552.	0.8	6

#	ARTICLE 3-choosability of planar graphs with http://www.w3.org/1998/Wath/Wath/Will"	IF	Citations
73	altimg="si1.gif" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo>	l ngBT /Ove	er\$ock 10 Tf
74	2014, 104, 28-59. A minimum degree condition forcing complete graph immersion. Combinatorica, 2014, 34, 279-298.	1.2	30
7 5	Strong Immersions and Maximum Degree. SIAM Journal on Discrete Mathematics, 2014, 28, 177-187.	0.8	5
76	Planar 4-critical graphs with four triangles. European Journal of Combinatorics, 2014, 41, 138-151.	0.8	12
77	Distance-two coloring of sparse graphs. European Journal of Combinatorics, 2014, 36, 406-415.	0.8	1
78	Large Independent Sets in Triangle-Free Planar Graphs. Lecture Notes in Computer Science, 2014, , 346-357.	1.3	2
79	A Dynamic Data Structure for MSO Properties in Graphs with Bounded Tree-Depth. Lecture Notes in Computer Science, 2014, , 334-345.	1.3	1
80	Star Chromatic Index. Journal of Graph Theory, 2013, 72, 313-326.	0.9	30
81	Chromatic number and complete graph substructures for degree sequences. Combinatorica, 2013, 33, 513-529.	1.2	7
82	Constant-factor approximation of the domination number in sparse graphs. European Journal of Combinatorics, 2013, 34, 833-840.	0.8	40
83	Sub-exponentially many 3-colorings of triangle-free planar graphs. Journal of Combinatorial Theory Series B, 2013, 103, 706-712.	1.0	5
84	Testing first-order properties for subclasses of sparse graphs. Journal of the ACM, 2013, 60, 1-24.	2.2	47
85	List-coloring embedded graphs. , 2013, , .		4
86	A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs. Lecture Notes in Computer Science, 2013, , 304-315.	1.3	11
87	Spectrally degenerate graphs: Hereditary case. Journal of Combinatorial Theory Series B, 2012, 102, 1099-1109.	1.0	4
88	Forbidden graphs for tree-depth. European Journal of Combinatorics, 2012, 33, 969-979.	0.8	22
89	Classes of graphs with small rank decompositions are <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\"\partimeta\/mml:mi></mml:mi></mml:math> -bounded. European Journal of Combinatorics, 2012. 33. 679-683.	0.8	22
90	Bipartizing fullerenes. European Journal of Combinatorics, 2012, 33, 1286-1293.	0.8	7

#	Article	IF	CITATIONS
91	Graphs with Two Crossings Are 5-Choosable. SIAM Journal on Discrete Mathematics, 2011, 25, 1746-1753.	0.8	7
92	Randić index and the diameter of a graph. European Journal of Combinatorics, 2011, 32, 434-442.	0.8	24
93	Three-coloring triangle-free planar graphs in linear time. ACM Transactions on Algorithms, 2011, 7, 1-14.	1.0	14
94	Nonâ€rainbow colorings of 3â€, 4―and 5â€connected plane graphs. Journal of Graph Theory, 2010, 63, 129-145	5.0.9	2
95	Toughness threshold for the existence of 2-walks in <mml:math altimg="si26.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mn>4<td>O.7 mri><td>nl:mrow></td></td></mml:mn></mml:mrow></mml:msub></mml:math>	O.7 mri> <td>nl:mrow></td>	nl:mrow>
96	Crossing-critical graphs with large maximum degree. Journal of Combinatorial Theory Series B, 2010, 100, 413-417.	1.0	10
97	On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 2010, 64, 330-342.	0.9	18
98	Small graph classes and bounded expansion. Journal of Combinatorial Theory Series B, 2010, 100, 171-175.	1.0	13
99	Spectral radius of finite and infinite planar graphs and of graphs of bounded genus. Journal of Combinatorial Theory Series B, 2010, 100, 729-739.	1.0	18
100	A note on antisymmetric flows in graphs. European Journal of Combinatorics, 2010, 31, 320-324.	0.8	2
101	3-Choosability of Triangle-Free Planar Graphs with Constraints on 4-Cycles. SIAM Journal on Discrete Mathematics, 2010, 24, 934-945.	0.8	12
102	Deciding First-Order Properties for Sparse Graphs. , 2010, , .		34
103	Algorithms for Classes of Graphs with Bounded Expansion. Lecture Notes in Computer Science, 2010, , 17-32.	1.3	6
104	On a Rado Type Problem for Homogeneous Second Order Linear Recurrences. Electronic Journal of Combinatorics, 2010, 17, .	0.4	0
105	$\langle i \rangle k \langle i \rangle$ -Chromatic Number of Graphs on Surfaces. SIAM Journal on Discrete Mathematics, 2009, 23, 477-486.	0.8	0
106	Matchings and Nonrainbow Colorings. SIAM Journal on Discrete Mathematics, 2009, 23, 344-348.	0.8	3
107	Planar graphs without 3-, 7-, and 8-cycles are 3-choosable. Discrete Mathematics, 2009, 309, 5899-5904.	0.7	10
108	Spectral radius of finite and infinite planar graphs and of graphs of bounded genus (extended) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 62 ⁻

#	Article	IF	CITATIONS
109	Distance constrained labelings of planar graphs with no short cycles. Discrete Applied Mathematics, 2009, 157, 2634-2645.	0.9	8
110	Two-factors in orientated graphs with forbidden transitions. Discrete Mathematics, 2009, 309, 104-112.	0.7	8
111	Three-coloring triangle-free planar graphs in linear time (extended abstract). , 2009, , .		7
112	Coloring triangle-free graphs on surfaces. , 2009, , .		7
113	On forbidden subdivision characterizations of graph classes. European Journal of Combinatorics, 2008, 29, 1321-1332.	0.8	22
114	Coloring squares of planar graphs with girth six. European Journal of Combinatorics, 2008, 29, 838-849.	0.8	57
115	List-Coloring Squares of Sparse Subcubic Graphs. SIAM Journal on Discrete Mathematics, 2008, 22, 139-159.	0.8	21
116	Planar Graphs of Odd-Girth at Least 9 are Homomorphic to the Petersen Graph. SIAM Journal on Discrete Mathematics, 2008, 22, 568-591.	0.8	9
117	Noncrossing Hamiltonian paths in geometric graphs. Discrete Applied Mathematics, 2007, 155, 1096-1105.	0.9	7
118	Probabilistic strategies for the partition and plurality problems. Random Structures and Algorithms, 2007, 30, 63-77.	1.1	10
119	Four gravity results. Discrete Mathematics, 2007, 307, 181-190.	0.7	0
120	Coloring Triangle-Free Graphs on Surfaces. , 2007, , 2-4.		0
121	A Theorem About a Contractible and Light Edge. SIAM Journal on Discrete Mathematics, 2006, 20, 55-61.	0.8	4
122	Eulerian colorings and the bipartizing matchings conjecture of Fleischner. European Journal of Combinatorics, 2006, 27, 1088-1101.	0.8	1
123	Locally consistent constraint satisfaction problems. Theoretical Computer Science, 2005, 348, 187-206.	0.9	1
124	Coloring face hypergraphs on surfaces. European Journal of Combinatorics, 2005, 26, 95-110.	0.8	10
125	Three Optimal Algorithms for Balls of Three Colors. Lecture Notes in Computer Science, 2005, , 206-217.	1.3	5
126	On the Complexity of the G-Reconstruction Problem. Lecture Notes in Computer Science, 2005, , 196-205.	1.3	0

ZDENEK DVORAK

#	Article	IF	CITATIONS
127	Noncrossing Hamiltonian Paths in Geometric Graphs. Lecture Notes in Computer Science, 2004, , 86-97.	1.3	2
128	An Algorithm for Cyclic Edge Connectivity of Cubic Graphs. Lecture Notes in Computer Science, 2004, , 236-247.	1.3	6
129	Locally Consistent Constraint Satisfaction Problems. Lecture Notes in Computer Science, 2004, , 469-480.	1.3	2
130	Complexity of Pattern Coloring of Cycle Systems. Lecture Notes in Computer Science, 2002, , 164-175.	1.3	0
131	On Planar Mixed Hypergraphs. Electronic Journal of Combinatorics, 2001, 8, .	0.4	15
132	Fatigue Damage Prediction as a Part of Technical Systems Reliability Assessment. Key Engineering Materials, 0, 755, 131-138.	0.4	3
133	Treewidth of grid subsets. Combinatorica, 0, , .	1.2	1
134	Coloring count cones of planar graphs. Journal of Graph Theory, 0, , .	0.9	0
135	On weighted sublinear separators. Journal of Graph Theory, 0, , .	0.9	1