Alexander Greenhough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6370587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescence-Activated Cell Sorting and Quantitative Real-Time PCR to Reveal VEGF-Expressing Macrophage Populations in the Zebrafish Larvae. Methods in Molecular Biology, 2022, 2475, 325-337.	0.9	Ο
2	Transcriptomic Analyses of MYCN-Regulated Genes in Anaplastic Wilms' Tumour Cell Lines Reveals Oncogenic Pathways and Potential Therapeutic Vulnerabilities. Cancers, 2021, 13, 656.	3.7	4
3	Interacting Proteins, Polymorphisms and the Susceptibility of Animals to SARS-CoV-2. Animals, 2021, 11, 797.	2.3	4
4	5-Aminosalicylic acid inhibits stem cell function in human adenoma-derived cells: implications for chemoprophylaxis in colorectal tumorigenesis. British Journal of Cancer, 2021, 124, 1959-1969.	6.4	7
5	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C)verlock 1() Tf 50 582 To
6	A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 564-575.	2.5	10
7	A Wnt-BMP4 Signaling Axis Induces MSX and NOTCH Proteins and Promotes Growth Suppression and Differentiation in Neuroblastoma. Cells, 2020, 9, 783.	4.1	8
8	BCL‑3 promotes cyclooxygenase‑2/prostaglandin�E2 signalling in colorectal cancer. International Journal of Oncology, 2020, 56, 1304-1313.	3.3	3
9	Wnt Signaling Is a Major Determinant of Neuroblastoma Cell Lineages. Frontiers in Molecular Neuroscience, 2019, 12, 90.	2.9	16
10	BCL-3 promotes a cancer stem cell phenotype by enhancing β-catenin signalling in colorectal tumour cells. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	24
11	LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica, 2019, 104, 1365-1377.	3.5	32
12	Wnt Signalling Drives Context-Dependent Differentiation or Proliferation in Neuroblastoma. Neoplasia, 2018, 20, 335-350.	5.3	39
13	LGR5 expression is regulated by EGF in early colorectal adenomas and governs EGFR inhibitor sensitivity. British Journal of Cancer, 2018, 118, 558-565.	6.4	13
14	Optimized delivery of siRNA into 3D tumor spheroid cultures in situ. Scientific Reports, 2018, 8, 7952.	3.3	20
15	Cancer cell adaptation to hypoxia involves a HIFâ€GPRC5A‥AP axis. EMBO Molecular Medicine, 2018, 10, .	6.9	72
16	Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO Journal, 2018, 37, .	7.8	183
17	BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut, 2016, 65, 1151-1164.	12.1	40
18	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	CITATIONS
19	Protein arginine methyltransferase 5 is a key regulator of the MYCN oncoprotein in neuroblastoma cells. Molecular Oncology, 2015, 9, 617-627.	4.6	49
20	Nutrient stress alters the glycosylation status of LGR5 resulting in reduced protein stability and membrane localisation in colorectal tumour cells: implications for targeting cancer stem cells. British Journal of Cancer, 2015, 112, 714-719.	6.4	15
21	Circulating prostaglandins as biomarkers for colorectal cancer?. EBioMedicine, 2015, 2, 105-106.	6.1	0
22	LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma. Oncotarget, 2015, 6, 40053-40067.	1.8	67
23	BAG-1 suppresses expression of the key regulatory cytokine transforming growth factor β (TGF-β1) in colorectal tumour cells. Oncogene, 2013, 32, 4490-4499.	5.9	17
24	LGR5 promotes survival in human colorectal adenoma cells and is upregulated by PGE 2 : implications for targeting adenoma stem cells with NSAIDs. Carcinogenesis, 2013, 34, 1150-1157.	2.8	67
25	Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO Journal, 2013, 32, 1903-1916.	7.8	259
26	β-catenin represses expression of the tumour suppressor 15-prostaglandin dehydrogenase in the normal intestinal epithelium and colorectal tumour cells. Gut, 2012, 61, 1306-1314.	12.1	54
27	Long-range epigenetic silencing of chromosome 5q31 protocadherins is involved in early and late stages of colorectal tumorigenesis through modulation of oncogenic pathways. Oncogene, 2012, 31, 4409-4419.	5.9	77
28	β-catenin negatively regulates expression of the prostaglandin transporter PGT in the normal intestinal epithelium and colorectal tumour cells: a role in the chemopreventive efficacy of aspirin?. British Journal of Cancer, 2012, 107, 1514-1517.	6.4	8
29	Colon tumour cells increase PGE2 by regulating COX-2 and 15-PGDH to promote survival during the microenvironmental stress of glucose deprivation. Carcinogenesis, 2011, 32, 1741-1747.	2.8	44
30	The proapoptotic BH3-only protein Bim is downregulated in a subset of colorectal cancers and is repressed by antiapoptotic COX-2/PGE2 signalling in colorectal adenoma cells. Oncogene, 2010, 29, 3398-3410.	5.9	42
31	The endogenous cannabinoid, anandamide, induces COX-2-dependent cell death in apoptosis-resistant colon cancer cells. International Journal of Oncology, 2010, 37, 187-93.	3.3	32
32	HGF/Met signalling promotes PGE2 biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 2009, 30, 1796-1804.	2.8	51
33	The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009, 30, 377-386.	2.8	1,058
34	Hypomethylation and Aberrant Expression of the Glioma Pathogenesis-Related 1 Gene in Wilms Tumors. Neoplasia, 2007, 9, 970-978.	5.3	40
35	The cannabinoid Î'9-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. International Journal of Cancer, 2007, 121, 2172-2180.	5.1	142
36	Cannabinoids and cancer: potential for colorectal cancer therapy. Biochemical Society Transactions, 2005. 33. 712-714.	3.4	27

#	Article	IF	CITATIONS
37	The endogenous cannabinoid, anandamide, induces cell death in colorectal carcinoma cells: a possible role for cyclooxygenase 2. Gut, 2005, 54, 1741-1750.	12.1	82
38	p16INK4a polymorphism: associations with tumour progression in patients with sporadic colorectal cancer. International Journal of Oncology, 2004, 25, 1447.	3.3	7