
Tiinamaija Tuomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6370498/publications.pdf Version: 2024-02-01

Τυναμαία Τυρμ

#	Article	IF	CITATIONS
1	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	27.8	9,051
2	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
3	Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.	27.8	3,249
4	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	21.4	2,641
5	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	21.4	2,634
6	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	21.4	2,421
7	New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics, 2010, 42, 105-116.	21.4	1,982
8	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	21.4	1,818
9	Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010, 467, 832-838.	27.8	1,789
10	Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics, 2008, 40, 638-645.	21.4	1,683
11	The common PPARÎ ³ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genetics, 2000, 26, 76-80.	21.4	1,672
12	Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics, 2010, 42, 579-589.	21.4	1,631
13	Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes and Endocrinology,the, 2018, 6, 361-369.	11.4	1,430
14	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	21.4	1,331
15	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	27.8	1,328
16	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	27.8	952
17	Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genetics, 2010, 42, 949-960.	21.4	836
18	A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genetics, 2012, 44, 659-669.	21.4	762

Τιιναμαιјα Τυομι

#	Article	IF	CITATIONS
19	Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature Genetics, 2012, 44, 991-1005.	21.4	746
20	Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. Journal of Clinical Investigation, 2007, 117, 2155-2163.	8.2	683
21	Variants in MTNR1B influence fasting glucose levels. Nature Genetics, 2009, 41, 77-81.	21.4	662
22	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.	0.6	615
23	Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nature Genetics, 2010, 42, 142-148.	21.4	591
24	Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nature Genetics, 2013, 45, 501-512.	21.4	578
25	The many faces of diabetes: a disease with increasing heterogeneity. Lancet, The, 2014, 383, 1084-1094.	13.7	497
26	Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics, 2014, 46, 357-363.	21.4	428
27	Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits. PLoS Genetics, 2013, 9, e1003500.	3.5	371
28	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	21.4	365
29	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	21.4	356
30	The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.	21.4	341
31	Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634.	0.6	335
32	Predictors of and Longitudinal Changes in Insulin Sensitivity and Secretion Preceding Onset of Type 2 Diabetes. Diabetes, 2005, 54, 166-174.	0.6	315
33	Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity. Diabetes, 2014, 63, 2158-2171.	0.6	297
34	Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diabetes and Vascular Disease Research, 2005, 2, 67-72.	2.0	273
35	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	21.4	261
36	Adult-Onset Autoimmune Diabetes in Europe Is Prevalent With a Broad Clinical Phenotype. Diabetes Care, 2013, 36, 908-913.	8.6	253

Τιιναμαιμά Τυομι

#	Article	IF	CITATIONS
37	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	21.4	250
38	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	27.8	248
39	Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nature Communications, 2016, 7, 11089.	12.8	201
40	Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes. Cell Metabolism, 2016, 23, 1067-1077.	16.2	194
41	Genetic Similarities Between Latent Autoimmune Diabetes in Adults, Type 1 Diabetes, and Type 2 Diabetes. Diabetes, 2008, 57, 1433-1437.	0.6	192
42	Directional dominance on stature and cognition inÂdiverse human populations. Nature, 2015, 523, 459-462.	27.8	173
43	A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 10, e1004235.	3.5	164
44	DNA methylation of loci within <i>ABCG1 </i> and <i>PHOSPHO1 </i> in blood DNA is associated with future type 2 diabetes risk. Epigenetics, 2016, 11, 482-488.	2.7	152
45	Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nature Genetics, 2013, 45, 1380-1385.	21.4	129
46	Management of Latent Autoimmune Diabetes in Adults: A Consensus Statement From an International Expert Panel. Diabetes, 2020, 69, 2037-2047.	0.6	129
47	Type 1 and Type 2 Diabetes: What Do They Have in Common?. Diabetes, 2005, 54, S40-S45.	0.6	124
48	A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes, 2017, 66, 2296-2309.	0.6	102
49	First Genome-Wide Association Study of Latent Autoimmune Diabetes in Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes. Diabetes Care, 2018, 41, 2396-2403.	8.6	99
50	Power in the phenotypic extremes: a simulation study of power in discovery and replication of rare variants. Genetic Epidemiology, 2011, 35, 236-246.	1.3	97
51	Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia, 2017, 60, 1740-1750.	6.3	96
52	Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nature Genetics, 2019, 51, 1596-1606.	21.4	96
53	Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876.	3.5	95
54	Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nature Communications, 2017, 8, 888.	12.8	95

Τιιναμαιμά Τυομι

#	Article	IF	CITATIONS
55	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	12.8	87
56	Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health. European Respiratory Journal, 2021, 57, 2003091.	6.7	85
57	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
58	Pleiotropic Effects of GIP on Islet Function Involve Osteopontin. Diabetes, 2011, 60, 2424-2433.	0.6	83
59	Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nature Genetics, 2021, 53, 1534-1542.	21.4	81
60	Improved Prandial Glucose Control With Lower Risk of Hypoglycemia With Nateglinide Than With Glibenclamide in Patients With Maturity-Onset Diabetes of the Young Type 3. Diabetes Care, 2006, 29, 189-194.	8.6	79
61	Insulin and Glucagon Secretion in Patients with Slowly Progressing Autoimmune Diabetes (LADA)1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 76-80.	3.6	75
62	Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance. Diabetes, 2013, 62, 2088-2094.	0.6	75
63	Latent Autoimmune Diabetes in Adults Differs Genetically From Classical Type 1 Diabetes Diagnosed After the Age of 35 Years. Diabetes Care, 2010, 33, 2062-2064.	8.6	71
64	Non-insulin-dependent Diabetes Mellitus - A Collision between Thrifty Genes and an Affluent Society. Annals of Medicine, 1997, 29, 37-53.	3.8	70
65	Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies <i>BCL2</i> and <i>FAM19A2</i> as Novel Insulin Sensitivity Loci. Diabetes, 2016, 65, 3200-3211.	0.6	67
66	Chromosome 2q31.1 Associates with ESRD in Women with Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2013, 24, 1537-1543.	6.1	66
67	Overweight, obesity and the risk of LADA: results from a Swedish case–control study and the Norwegian HUNT Study. Diabetologia, 2018, 61, 1333-1343.	6.3	63
68	A Genome-Wide Scan in Families With Maturity-Onset Diabetes of the Young: Evidence for Further Genetic Heterogeneity. Diabetes, 2003, 52, 872-881.	0.6	62
69	Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia, 2014, 57, 1859-1868.	6.3	59
70	Obstructive sleep apnoea and the risk for coronary heart disease and type 2 diabetes: a longitudinal population-based study in Finland. BMJ Open, 2018, 8, e022752.	1.9	54
71	1-Hour Post-OGTT Glucose Improves the Early Prediction of Type 2 Diabetes by Clinical and Metabolic Markers. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1131-1140.	3.6	53
72	How Communicating Polygenic and Clinical Risk for Atherosclerotic Cardiovascular Disease Impacts Health Behavior: an Observational Follow-up Study. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003459.	3.6	53

Τιιναμαιμά Τυομι

#	Article	IF	CITATIONS
73	Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nature Communications, 2021, 12, 3505.	12.8	49
74	Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults. Diabetes Care, 2022, 45, 811-818.	8.6	47
75	Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes. Human Molecular Genetics, 2022, 31, 3377-3391.	2.9	47
76	Genetic determinants of circulating GIP and GLP-1 concentrations. JCI Insight, 2017, 2, .	5.0	46
77	GAD Antibody Positivity Predicts Type 2 Diabetes in an Adult Population. Diabetes, 2010, 59, 416-422.	0.6	45
78	The Association between HbA1c, Fasting Glucose, 1-Hour Glucose and 2-Hour Glucose during an Oral Glucose Tolerance Test and Cardiovascular Disease in Individuals with Elevated Risk for Diabetes. PLoS ONE, 2014, 9, e109506.	2.5	38
79	Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. European Journal of Endocrinology, 2016, 175, 605-614.	3.7	35
80	Subgroups of patients with young-onset type 2 diabetes in India reveal insulin deficiency as a major driver. Diabetologia, 2022, 65, 65-78.	6.3	34
81	Prediction of silent celiac disease at diagnosis of childhood type 1 diabetes by tissue transglutaminase autoantibodies and HLA. Pediatric Diabetes, 2001, 2, 58-65.	2.9	33
82	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	5.3	31
83	Diabetes and Prediabetes Classification Using Glycemic Variability Indices From Continuous Glucose Monitoring Data. Journal of Diabetes Science and Technology, 2018, 12, 105-113.	2.2	29
84	Smoking and the Risk of LADA: Results From a Swedish Population-Based Case-Control Study. Diabetes Care, 2016, 39, 794-800.	8.6	26
85	Urinary extracellular vesicles: Assessment of preâ€analytical variables and development of a quality control with focus on transcriptomic biomarker research. Journal of Extracellular Vesicles, 2021, 10, e12158.	12.2	26
86	Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults: A Meta-analysis. Diabetes Care, 2021, 44, 1062-1069.	8.6	25
87	Simulation of Finnish Population History, Guided by Empirical Genetic Data, to Assess Power of Rare-Variant Tests in Finland. American Journal of Human Genetics, 2014, 94, 710-720.	6.2	24
88	Clusters provide a better holistic view of type 2 diabetes than simple clinical features. Lancet Diabetes and Endocrinology,the, 2019, 7, 668-669.	11.4	24
89	Rare coding variants in 35 genes associate with circulating lipid levels—A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	6.2	24
90	Genetic Discrimination Between LADA and Childhood-Onset Type 1 Diabetes Within the MHC. Diabetes Care, 2020, 43, 418-425.	8.6	23

Τιιναμαιјα Τυομι

#	Article	IF	CITATIONS
91	Interaction Between Overweight and Genotypes of HLA, TCF7L2, and FTO in Relation to the Risk of Latent Autoimmune Diabetes in Adults and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4815-4826.	3.6	22
92	Zinc transporter type 8 autoantibodies (ZnT8A): prevalence and phenotypic associations in latent autoimmune diabetes patients and patients with adult onset type 1 diabetes. Autoimmunity, 2013, 46, 251-258.	2.6	21
93	Biliary Anomalies in Patients With HNF1B Diabetes. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2075-2082.	3.6	20
94	Glucose-Dependent Insulinotropic Peptide in the High-Normal Range Is Associated With Increased Carotid Intima-Media Thickness. Diabetes Care, 2021, 44, 224-230.	8.6	20
95	Glucose-dependent insulinotropic peptide and risk of cardiovascular events and mortality: a prospective study. Diabetologia, 2020, 63, 1043-1054.	6.3	18
96	Integration of questionnaire-based risk factors improves polygenic risk scores for human coronary heart disease and type 2 diabetes. Communications Biology, 2022, 5, 158.	4.4	18
97	ACE2 expression in adipose tissue is associated with cardio-metabolic risk factors and cell type composition—implications for COVID-19. International Journal of Obesity, 2022, 46, 1478-1486.	3.4	18
98	Low birthweight is associated with an increased risk of LADA and type 2 diabetes: results from a Swedish case–control study. Diabetologia, 2015, 58, 2525-2532.	6.3	16
99	HAPT2D: high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability. European Journal of Endocrinology, 2018, 178, 331-341.	3.7	12
100	Physical Activity, Genetic Susceptibility, and the Risk of Latent Autoimmune Diabetes in Adults and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4112-e4123.	3.6	11
101	Clycaemic variability-based classification of impaired glucose tolerance vs. type 2 diabetes using continuous glucose monitoring data. Computers in Biology and Medicine, 2018, 96, 141-146.	7.0	10
102	Human Physiology of Genetic Defects Causing Beta-cell Dysfunction. Journal of Molecular Biology, 2020, 432, 1579-1598.	4.2	10
103	Birthweight, BMI in adulthood and latent autoimmune diabetes in adults: a Mendelian randomisation study. Diabetologia, 2022, 65, 1510-1518.	6.3	9
104	Combined lifestyle factors and the risk of LADA and type 2 diabetes – Results from a Swedish population-based case-control study. Diabetes Research and Clinical Practice, 2021, 174, 108760.	2.8	8
105	A Web Portal for Communicating Polygenic Risk Score Results for Health Care Use—The P5 Study. Frontiers in Genetics, 2021, 12, 763159.	2.3	8
106	The associations of daylight and melatonin receptor 1B gene rs10830963 variant with glycemic traits: the prospective PPP-Botnia study. Annals of Medicine, 2019, 51, 58-67.	3.8	7
107	A multigenerational study on phenotypic consequences of the most common causal variant of HNF1A-MODY. Diabetologia, 2022, 65, 632-643.	6.3	7
108	Melatonin receptor 1B gene rs10830963 polymorphism, depressive symptoms and glycaemic traits. Annals of Medicine, 2018, 50, 704-712.	3.8	6

#	Article	IF	CITATIONS
109	Genotypes of HLA, TCF7L2, and FTO as potential modifiers of the association between sweetened beverage consumption and risk of LADA and type 2 diabetes. European Journal of Nutrition, 2020, 59, 127-135.	3.9	6
110	Novel diabetes subgroups – Authors' reply. Lancet Diabetes and Endocrinology,the, 2018, 6, 440-441.	11.4	4
111	Low-cost exercise interventions improve long-term cardiometabolic health independently of a family history of type 2 diabetes: a randomized parallel group trial. BMJ Open Diabetes Research and Care, 2020, 8, e001377.	2.8	3
112	Elevated One-Hour Post-Load Glucose Is Independently Associated with Albuminuria: A Cross-Sectional Population Study. Journal of Clinical Medicine, 2022, 11, 4124.	2.4	2
113	Intrauterine Hyperglycemia Modifying the Development of (Monogenic) Diabetes?. Diabetes Care, 2003, 26, 1295-1296.	8.6	1
114	Saving time by replacing the standardised two-hour oral glucose tolerance test with a one-hour test. Diabetes Research and Clinical Practice, 2022, 183, 109156.	2.8	1
115	Lipid-Associated Variants near ANGPTL3 and LPL Show Parent-of-Origin Specific Effects on Blood Lipid Levels and Obesity. Genes, 2022, 13, 91.	2.4	0