
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6370352/publications.pdf Version: 2024-02-01

LOSHUA LLAWLED

#	Article	IF	CITATIONS
1	Global review on interactions between insect pests and other forest disturbances. Landscape Ecology, 2021, 36, 945-972.	1.9	46
2	An ecosystem service perspective on urban nature, physical activity, and health. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	115
3	Assessing the Relative Importance of Factors at Multiple Spatial Scales Affecting Terrestrial and Aquatic Wildlife. Current Landscape Ecology Reports, 2020, 5, 12-24.	1.1	3
4	Combining physical and speciesâ€based approaches improves refugia identification. Frontiers in Ecology and the Environment, 2020, 18, 254-260.	1.9	34
5	Planning for climate change through additions to a national protected area network: implications for cost and configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190117.	1.8	48
6	Nature and mental health: An ecosystem service perspective. Science Advances, 2019, 5, eaax0903.	4.7	899
7	To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16155-16158.	3.3	96
8	Unintended habitat loss on private land from grazing restrictions on public rangelands. Journal of Applied Ecology, 2019, 56, 52-62.	1.9	12
9	Recent Advances and Current Challenges in Applying Source-Sink Theory to Species Conservation. Current Landscape Ecology Reports, 2019, 4, 51-60.	1.1	8
10	Land use change and rodenticide exposure trump climate change as the biggest stressors to San Joaquin kit fox. PLoS ONE, 2019, 14, e0214297.	1.1	5
11	Climateâ€niche factor analysis: a spatial approach to quantifying species vulnerability to climate change. Ecography, 2019, 42, 1494-1503.	2.1	48
12	Connectivity for species on the move: supporting climateâ€driven range shifts. Frontiers in Ecology and the Environment, 2019, 17, 270-278.	1.9	78
13	Sparking interest: A design framework for mobile technologies to promote children's interest in nature. International Journal of Child-Computer Interaction, 2019, 20, 24-34.	2.5	22
14	Assessing source-sink stability in the context of management and land-use change. Landscape Ecology, 2019, 34, 259-274.	1.9	9
15	A multispecies test of source–sink indicators to prioritize habitat for declining populations. Conservation Biology, 2018, 32, 648-659.	2.4	14
16	A tribute to a true conservation innovator, Brad McRae, 1966-2017. Conservation Biology, 2018, 33, 480.	2.4	2
17	Distribution and protection of climatic refugia in North America. Conservation Biology, 2018, 32, 1414-1425.	2.4	55
18	Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation. PLoS ONE, 2018, 13, e0192538.	1.1	42

#	Article	IF	CITATIONS
19	Identifying the impacts of critical habitat designation on land cover change. Resources and Energy Economics, 2017, 47, 89-125.	1.1	9
20	Scaleâ€dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Global Change Biology, 2017, 23, 4508-4520.	4.2	98
21	Past, present, and future of ecological integrity assessment for fresh waters. Frontiers in Ecology and the Environment, 2017, 15, 197-205.	1.9	44
22	Connecting today's climates to future climate analogs to facilitate movement of species under climate change. Conservation Biology, 2017, 31, 1397-1408.	2.4	82
23	Integrating mechanistic and empirical model projections to assess climate impacts on tree species distributions in northwestern North America. Global Change Biology, 2017, 23, 2005-2015.	4.2	23
24	Behavioral flexibility as a mechanism for coping with climate change. Frontiers in Ecology and the Environment, 2017, 15, 299-308.	1.9	240
25	Future climate vulnerability – evaluating multiple lines of evidence. Frontiers in Ecology and the Environment, 2017, 15, 367-376.	1.9	11
26	Effects of local land-use planning on development and disturbance in riparian areas. Land Use Policy, 2017, 60, 16-25.	2.5	24
27	Nature Contact and Human Health: A Research Agenda. Environmental Health Perspectives, 2017, 125, 075001.	2.8	719
28	Weighing the relative potential impacts of climate change and landâ€use change on an endangered bird. Ecology and Evolution, 2016, 6, 4468-4477.	0.8	11
29	Intrinsic and extrinsic drivers of source–sink dynamics. Ecology and Evolution, 2016, 6, 892-904.	0.8	34
30	Achieving climate connectivity in a fragmented landscape. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7195-7200.	3.3	194
31	Relative vulnerability to climate change of trees in western North America. Climatic Change, 2016, 136, 367-379.	1.7	13
32	Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning. PLoS ONE, 2016, 11, e0147201.	1.1	8
33	The theory behind, and the challenges of, conserving nature's stage in a time of rapid change. Conservation Biology, 2015, 29, 618-629.	2.4	188
34	Divergence in sink contributions to population persistence. Conservation Biology, 2015, 29, 1674-1683.	2.4	18
35	Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrological Processes, 2015, 29, 4719-4737.	1.1	107
36	Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands. PLoS ONE, 2015, 10, e0136385.	1.1	49

#	Article	IF	CITATIONS
37	Adapting California's Ecosystems to a Changing Climate. BioScience, 2015, 65, 247-262.	2.2	22
38	Relative sensitivity to climate change of species in northwestern North America. Biological Conservation, 2015, 187, 127-133.	1.9	26
39	Relative influence of local and landscape factors on bird communities vary by species and functional group. Landscape Ecology, 2015, 30, 287-299.	1.9	21
40	Climate-induced range overlap among closely related species. Nature Climate Change, 2015, 5, 883-886.	8.1	33
41	Conserving Biodiversity: Practical Guidance about Climate Change Adaptation Approaches in Support of Land-use Planning. Natural Areas Journal, 2015, 35, 190-203.	0.2	92
42	Land Use as a Driver of Patterns of Rodenticide Exposure in Modeled Kit Fox Populations. PLoS ONE, 2015, 10, e0133351.	1.1	23
43	Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change. PLoS ONE, 2015, 10, e0140486.	1.1	94
44	Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7492-7497.	3.3	557
45	Perception, acquisition and use of ecosystem services: Human behavior, and ecosystem management and policy implications. Ecosystem Services, 2014, 10, 180-186.	2.3	119
46	Getting the most connectivity per conservation dollar. Frontiers in Ecology and the Environment, 2014, 12, 491-497.	1.9	30
47	Mapping sources, sinks, and connectivity using a simulation model of northern spotted owls. Landscape Ecology, 2014, 29, 579-592.	1.9	47
48	Dependence of the Endangered Black apped Vireo on Sustained Cowbird Management. Conservation Biology, 2014, 28, 561-571.	2.4	23
49	Comparison of climate change vulnerability assessments for wildlife. Wildlife Society Bulletin, 2014, 38, 386-394.	1.6	25
50	Connectivity Planning to Address Climate Change. Conservation Biology, 2013, 27, 407-416.	2.4	164
51	Projected climateâ€driven faunal movement routes. Ecology Letters, 2013, 16, 1014-1022.	3.0	153
52	Biodiversity in a changing climate: a synthesis of current and projected trends in the US. Frontiers in Ecology and the Environment, 2013, 11, 465-473.	1.9	125
53	Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Frontiers in Ecology and the Environment, 2013, 11, 502-510.	1.9	193
54	Tools for Assessing Climate Impacts on Fish and Wildlife. Journal of Fish and Wildlife Management, 2013, 4, 220-241.	0.4	10

#	Article	IF	CITATIONS
55	Projected Climateâ€Induced Habitat Loss for Salmonids in the John Day River Network, Oregon, U.S.A Conservation Biology, 2012, 26, 873-882.	2.4	75
56	Maximising return on conservation investment in the conterminous USA. Ecology Letters, 2012, 15, 1249-1256.	3.0	71
57	Performance of habitat suitability models for the endangered black-capped vireo built with remotely-sensed data. Remote Sensing of Environment, 2012, 119, 35-42.	4.6	31
58	Will extreme climatic events facilitate biological invasions?. Frontiers in Ecology and the Environment, 2012, 10, 249-257.	1.9	402
59	Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8606-8611.	3.3	437
60	Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, 2012, 10, 20-28.	1.9	195
61	The Adaptation for Conservation Targets (ACT) Framework: A Tool for Incorporating Climate Change into Natural Resource Management. Environmental Management, 2012, 50, 341-351.	1.2	106
62	Beyond Reserves and Corridors: Policy Solutions to Facilitate the Movement of Plants and Animals in a Changing Climate. BioScience, 2011, 61, 713-719.	2.2	35
63	Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau. PLoS ONE, 2011, 6, e28788.	1.1	39
64	Conservation for any budget. Nature Climate Change, 2011, 1, 350-351.	8.1	0
65	Challenges and Opportunities in Implementing Managed Relocation for Conservation of Freshwater Species. Conservation Biology, 2011, 25, 40-47.	2.4	125
66	Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium dendrobatidis in the United States. Biodiversity and Conservation, 2011, 20, 1911-1920.	1.2	47
67	Reframing the debate over assisted colonization. Frontiers in Ecology and the Environment, 2011, 9, 569-574.	1.9	77
68	Projected Climate Impacts for the Amphibians of the Western Hemisphere. Conservation Biology, 2010, 24, 38-50.	2.4	127
69	Resource management in a changing and uncertain climate. Frontiers in Ecology and the Environment, 2010, 8, 35-43.	1.9	157
70	Direct and Indirect Effects of Climate Change on Amphibian Populations. Diversity, 2010, 2, 281-313.	0.7	255
71	Recent and Widespread Rapid Morphological Change in Rodents. PLoS ONE, 2009, 4, e6452.	1.1	81
72	Climate Change Adaptation for the US National Wildlife Refuge System. Environmental Management, 2009. 44, 1043-1052	1.2	41

5

JOSHUA J LAWLER

#	Article	IF	CITATIONS
73	U.S. Natural Resources and Climate Change: Concepts and Approaches for Management Adaptation. Environmental Management, 2009, 44, 1001-1021.	1.2	151
74	Climate Change Adaptation Strategies for Resource Management and Conservation Planning. Annals of the New York Academy of Sciences, 2009, 1162, 79-98.	1.8	262
75	Why do we fly? Ecologists' sins of emission. Frontiers in Ecology and the Environment, 2009, 7, 294-296.	1.9	74
76	Projected climateâ€induced faunal change in the Western Hemisphere. Ecology, 2009, 90, 588-597.	1.5	349
77	Applied Climate-Change Analysis: The Climate Wizard Tool. PLoS ONE, 2009, 4, e8320.	1.1	153
78	A reassessment of the interface between conservation and behaviour. Animal Behaviour, 2008, 75, 731-737.	0.8	60
79	Machine Learning Methods Without Tears: A Primer for Ecologists. Quarterly Review of Biology, 2008, 83, 171-193.	0.0	561
80	Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9471-9476.	3.3	311
81	RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY. Ecology, 2007, 88, 2783-2792.	1.5	3,224
82	Academic Institutions in the United States and Canada Ranked According to Research Productivity in the Field of Conservation Biology. Conservation Biology, 2007, 21, 1139-1144.	2.4	20
83	Conservation science: a 20-year report card. Frontiers in Ecology and the Environment, 2006, 4, 473-480.	1.9	169
84	A Variance-decomposition Approach to Investigating Multiscale Habitat Associations. Condor, 2006, 108, 47.	0.7	49
85	A Variance-decomposition Approach to Investigating Multiscale Habitat Associations. Condor, 2006, 108, 47-58.	0.7	54
86	Cross-scale Correlations and the Design and Analysis of Avian Habitat Selection Studies. Condor, 2006, 108, 59-70.	0.7	44
87	Predicting climate-induced range shifts: model differences and model reliability. Global Change Biology, 2006, 12, 1568-1584.	4.2	298
88	Cross-scale Correlations and the Design and Analysis of Avian Habitat Selection Studies. Condor, 2006, 108, 59.	0.7	46
89	Predicting Recovery from Acidic Deposition: Applying a Modified TAF (Tracking and Analysis) Tj ETQq1 1 0.78431 383-399.	4 rgBT /Ov 1.1	verlock 10 Tf 4
90	HOW WELL DO CONSISTENTLY MONITORED BREEDING BIRD SURVEY ROUTES REPRESENT THE ENVIRONMENTS OF THE CONTERMINOUS UNITED STATES?. Condor, 2004, 106, 801.	0.7	25

#	Article	IF	CITATIONS
91	Evaluating Habitat as a Surrogate for Population Viability Using a Spatially Explicit Population Model. Environmental Monitoring and Assessment, 2004, 94, 85-100.	1.3	12
92	Book review, Integrated Public Lands Management: A Coarse-Scale Economic Perspective. Landscape Ecology, 2003, 18, 207-208.	1.9	0
93	Rare Species and the Use of Indicator Groups for Conservation Planning. Conservation Biology, 2003, 17, 875-882.	2.4	173
94	COMPOSITION OF CAVITY-NESTING BIRD COMMUNITIES IN MONTANE ASPEN WOODLAND FRAGMENTS: THE ROLES OF LANDSCAPE CONTEXT AND FOREST STRUCTURE. Condor, 2002, 104, 890.	0.7	15
95	Composition of Cavity-Nesting Bird Communities in Montane Aspen Woodland Fragments: The Roles of Landscape Context and Forest Structure. Condor, 2002, 104, 890-896.	0.7	16
96	Title is missing!. Landscape Ecology, 2002, 17, 233-245.	1.9	48
97	Nest-site selection in Savannah sparrows: using gulls as scarecrows?. Animal Behaviour, 1997, 53, 197-208.	0.8	31