Ramon Brasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/636979/publications.pdf

Version: 2024-02-01

74 papers 3,564 citations

31 h-index

147801

55 g-index

77 all docs

77 docs citations

times ranked

77

2559 citing authors

#	Article	IF	CITATIONS
1	An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 2012, 485, 78-81.	27.8	345
2	Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System. Icarus, 2013, 225, 40-49.	2.5	193
3	EVIDENCE FROM THE ASTEROID BELT FOR A VIOLENT PAST EVOLUTION OF JUPITER'S ORBIT. Astronomical Journal, 2010, 140, 1391-1401.	4.7	192
4	Embedded star clusters and the formation of the Oort Cloud. Icarus, 2006, 184, 59-82.	2.5	173
5	Origin and Evolution of the Cometary Reservoirs. Space Science Reviews, 2015, 197, 191-269.	8.1	140
6	Capture of the Sun's Oort Cloud from Stars in Its Birth Cluster. Science, 2010, 329, 187-190.	12.6	136
7	Reassessing the formation of the inner Oort cloud in an embedded star cluster. Icarus, 2012, 217, 1-19.	2.5	105
8	The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth and Planetary Science Letters, 2017, 480, 25-32.	4.4	95
9	Simulations of planet migration driven by planetesimal scattering. Icarus, 2009, 199, 197-209.	2.5	94
10	Onset of Giant Planet Migration before 4480 Million Years Ago. Astrophysical Journal, 2019, 881, 44.	4.5	82
11	Embedded star clusters and the formation of the Oort cloud. Icarus, 2007, 191, 413-433.	2.5	81
12	An Oort cloud origin for the high-inclination, high-perihelion Centaurs. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3396-3402.	4.4	80
13	The Formation of Mars: Building Blocks and Accretion Time Scale. Space Science Reviews, 2013, 174, 11-25.	8.1	7 5
14	ANALYSIS OF TERRESTRIAL PLANET FORMATION BY THE GRAND TACK MODEL: SYSTEM ARCHITECTURE AND TACK LOCATION. Astrophysical Journal, 2016, 821, 75.	4.5	73
15	The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nature Astronomy, 2020, 4, 492-499.	10.1	7 3
16	Asteroid 2002 VE68, a quasi-satellite of Venus. Monthly Notices of the Royal Astronomical Society, 2004, 351, L63-L65.	4.4	71
17	Transient co-orbital asteroids. Icarus, 2004, 171, 102-109.	2.5	71
18	Constraining the primordial orbits of the terrestrial planets. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3417-3427.	4.4	71

#	Article	IF	CITATIONS
19	When Did Life Likely Emerge on Earth in an RNAâ€First Process?. ChemSystemsChem, 2020, 2, e1900035.	2.6	71
20	How planetary growth outperforms migration. Astronomy and Astrophysics, 2019, 622, A202.	5.1	67
21	Stability limits for the quasi-satellite orbit. Monthly Notices of the Royal Astronomical Society, 2006, 369, 15-24.	4.4	61
22	Late veneer and late accretion to the terrestrial planets. Earth and Planetary Science Letters, 2016, 455, 85-93.	4.4	57
23	One to One Resonance at High Inclination. Celestial Mechanics and Dynamical Astronomy, 2004, 88, 123-152.	1.4	46
24	TWO SUPER-EARTHS ORBITING THE SOLAR ANALOG HD 41248 ON THE EDGE OF A 7:5 MEAN MOTION RESONANCE. Astrophysical Journal, 2013, 771, 41.	4.5	46
25	The observation of large semi-major axis Centaurs: Testing for the signature of a planetary-mass solar companion. Icarus, 2015, 258, 37-49.	2.5	44
26	Re-assessing the formation of the inner Oort cloud in an embedded star cluster – II. Probing the inner edge. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3788-3796.	4.4	39
27	The Structure of the Distant Kuiper Belt in a Nice Model Scenario. Astronomical Journal, 2017, 153, 127.	4.7	38
28	Impact bombardment chronology of the terrestrial planets from 4.5†Ga to 3.5†Ga. Icarus, 2020, 338, 113514.	2.5	38
29	Discovery of Earth's quasiâ€satellite. Meteoritics and Planetary Science, 2004, 39, 1251-1255.	1.6	37
30	The cool and distant formation of Mars. Earth and Planetary Science Letters, 2017, 468, 85-93.	4.4	37
31	A dynamical study on the habitability of terrestrial exoplanets – II The super-Earth HD 40307Âg. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3685-3700.	4.4	35
32	Saving Super-Earths: Interplay between Pebble Accretion and Type I Migration. Astronomical Journal, 2017, 153, 222.	4.7	35
33	TILTING SATURN WITHOUT TILTING JUPITER: CONSTRAINTS ON GIANT PLANET MIGRATION. Astronomical Journal, 2015, 150, 157.	4.7	34
34	Reassessing the origin of Triton. Icarus, 2011, 214, 113-130.	2.5	33
35	EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION. Astrophysical Journal, 2016, 818, 15.	4.5	33
36	Some properties of a two-body system under the influence of the Galactic tidal field. Monthly Notices of the Royal Astronomical Society, 2001, 324, 1109-1116.	4.4	32

#	Article	IF	CITATIONS
37	Asteroid Family Associations of Active Asteroids. Astronomical Journal, 2018, 155, 96.	4.7	32
38	$\langle i \rangle N \langle i \rangle$ -body simulations of planet formation via pebble accretion. Astronomy and Astrophysics, 2017, 607, A67.	5.1	31
39	Long-term evolution of the Neptune Trojan 2001 QR322. Monthly Notices of the Royal Astronomical Society, 2004, 347, 833-836.	4.4	30
40	A dynamical study on the habitability of terrestrial exoplanets – I. Tidally evolved planet–satellite pairs. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1673-1685.	4.4	30
41	Jupiter's Influence on the Building Blocks of Mars and Earth. Geophysical Research Letters, 2018, 45, 5908-5917.	4.0	27
42	A colossal impact enriched Mars' mantle with noble metals. Geophysical Research Letters, 2017, 44, 5978-5985.	4.0	26
43	Embedded star clusters and the formation of the Oort cloudIII. Evolution of the inner cloud during the Galactic phase. Icarus, 2008, 196, 274-284.	2.5	25
44	Enhanced constraints on the interior composition and structure of terrestrial exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2222-2233.	4.4	25
45	Plausible Home Stars of the Interstellar Object †Oumuamua Found in Gaia DR2. Astronomical Journal, 2018, 156, 205.	4.7	23
46	The role of secular resonances on trojans of the terrestrial planets. Monthly Notices of the Royal Astronomical Society, 2002, 334, 241-247.	4.4	22
47	A survey of orbits of co-orbitals of Mars. Planetary and Space Science, 2005, 53, 617-624.	1.7	22
48	Trapping Low-mass Planets at the Inner Edge of the Protostellar Disk. Astrophysical Journal Letters, 2018, 864, L8.	8.3	21
49	Growing Mars fast: High-resolution GPU simulations of embryo formation. Icarus, 2021, 359, 114305.	2.5	21
50	Asteroids on Earth-like orbits and their origin. Monthly Notices of the Royal Astronomical Society, 2008, 386, 2031-2038.	4.4	19
51	A new and simple prescription for planet orbital migration and eccentricity damping by planet–disc interactions based on dynamical friction. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5666-5674.	4.4	18
52	Stability analysis of the martian obliquity during the Noachian era. Icarus, 2011, 213, 423-427.	2.5	17
53	The curious case of Mars' formation. Astronomy and Astrophysics, 2018, 617, A17.	5.1	17
54	Feedstocks of the Terrestrial Planets. Space Science Reviews, 2018, 214, 1.	8.1	15

#	Article	IF	CITATIONS
55	Orbital evolution of Saturn's mid-sized moons and the tidal heating of Enceladus. Icarus, 2019, 317, 570-582.	2.5	15
56	An analytical method to compute comet cloud formation efficiency and its application. Celestial Mechanics and Dynamical Astronomy, 2008, 100, 1-26.	1.4	13
57	The tidal parameters of TRAPPIST-1b and c. Monthly Notices of the Royal Astronomical Society, 2019, 487, 34-47.	4.4	13
58	Isotopically distinct terrestrial planets via local accretion. Icarus, 2021, 354, 114052.	2.5	13
59	The terrestrial planet formation paradox inferred from high-resolution N-body simulations. Icarus, 2022, 371, 114692.	2.5	13
60	Impact bombardment on the regular satellites of Jupiter and Uranus during an episode of giant planet migration. Earth and Planetary Science Letters, 2019, 506, 407-416.	4.4	11
61	Hill stability of a triple system with an inner binary of large mass ratio. Monthly Notices of the Royal Astronomical Society, 2002, 332, 723-728.	4.4	8
62	Mars in the aftermath of a colossal impact. Icarus, 2019, 333, 87-95.	2.5	8
63	Early impact chronology of the icy regular satellites of the outer solar system. Icarus, 2021, 358, 114184.	2.5	8
64	Mars' Formation Can Constrain the Primordial Orbits of the Gas Giants. Astrophysical Journal Letters, 2021, 910, L16.	8.3	8
65	The origin of the cratering asymmetry on Triton. Monthly Notices of the Royal Astronomical Society, 2019, 486, 836-842.	4.4	7
66	Efficient tidal dissipation in Deimos. Icarus, 2020, 347, 113791.	2.5	7
67	GENGA. II. GPU Planetary N-body Simulations with Non-Newtonian Forces and High Number of Particles. Astrophysical Journal, 2022, 932, 124.	4.5	7
68	Inner Solar System dynamical analogs of plutinos. Icarus, 2008, 194, 789-799.	2.5	6
69	Modification of the composition and density of Mercury from late accretion. Icarus, 2021, 354, 114064.	2,5	6
70	Effects of pebble accretion on the growth and composition of planetesimals in the inner Solar system. Monthly Notices of the Royal Astronomical Society, 2022, 511, 158-175.	4.4	6
71	A new estimate for the age of highly-siderophile element retention in the lunar mantle from late accretion. Icarus, 2021, 361, 114389.	2.5	5
72	Thermal effects of late accretion to the crust and mantle of Mercury. Earth and Planetary Science Letters, 2018, 482, 536-544.	4.4	3

#	Article	IF	CITATIONS
73	Evidence of a primordial isotopic gradient in the inner region of the solar protoplanetary disc. Astronomy and Astrophysics, 2022, 660, A36.	5.1	2
74	Clues to late accretion from Venus's atmosphere. Nature Geoscience, 2020, 13, 258-259.	12.9	0