## Stephen F Chenoweth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6369215/publications.pdf

Version: 2024-02-01

88 papers 5,382 citations

38 h-index 95266 68 g-index

95 all docs 95
docs citations

95 times ranked 4065 citing authors

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genetic and social contributions to sex differences in lifespan in <i>Drosophila serrata</i> . Journal of Evolutionary Biology, 2022, 35, 657-663.                                                                                     | 1.7  | 4         |
| 2  | Natural variation at a single gene generates sexual antagonism across fitness components in Drosophila. Current Biology, 2022, 32, 3161-3169.e7.                                                                                       | 3.9  | 14        |
| 3  | The impact of artificial selection for Wolbachia-mediated dengue virus blocking on phage WO. PLoS<br>Neglected Tropical Diseases, 2021, 15, e0009637.                                                                                  | 3.0  | 6         |
| 4  | Integrating genomics and multivariate evolutionary quantitative genetics: a case study of constraints on sexual selection in <i>Drosophila serrata</i> . Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211785. | 2.6  | 9         |
| 5  | Artificial Selection Finds New Hypotheses for the Mechanism of Wolbachia-Mediated Dengue Blocking in Mosquitoes. Frontiers in Microbiology, 2020, 11, 1456.                                                                            | 3.5  | 15        |
| 6  | Selection on Aedes aegypti alters Wolbachia-mediated dengue virus blocking and fitness. Nature Microbiology, 2019, 4, 1832-1839.                                                                                                       | 13.3 | 62        |
| 7  | Dominance reversals and the maintenance of genetic variation for fitness. PLoS Biology, 2019, 17, e3000118.                                                                                                                            | 5.6  | 53        |
| 8  | The origin and maintenance of metabolic allometry in animals. Nature Ecology and Evolution, 2019, 3, 598-603.                                                                                                                          | 7.8  | 86        |
| 9  | Mutational Pleiotropy and the Strength of Stabilizing Selection Within and Between Functional Modules of Gene Expression. Genetics, 2018, 208, 1601-1616.                                                                              | 2.9  | 14        |
| 10 | A Genomic Reference Panel for <i>Drosophila serrata</i> . G3: Genes, Genomes, Genetics, 2018, 8, 1335-1346.                                                                                                                            | 1.8  | 23        |
| 11 | Allowing nature to be nurture: a comment on Bailey et al Behavioral Ecology, 2018, 29, 16-17.                                                                                                                                          | 2.2  | 1         |
| 12 | The transcriptional response of Aedes aegypti with variable extrinsic incubation periods for dengue virus. Genome Biology and Evolution, 2018, 10, 3141-3151.                                                                          | 2.5  | 14        |
| 13 | Artificial selection reveals sex differences in the genetic basis of sexual attractiveness. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5498-5503.                                     | 7.1  | 11        |
| 14 | Genetic constraints on microevolutionary divergence of sex-biased gene expression. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170427.                                                        | 4.0  | 27        |
| 15 | The Genomics of Sexual Conflict. American Naturalist, 2018, 192, 274-286.                                                                                                                                                              | 2.1  | 93        |
| 16 | Sexâ€biased transcriptome divergence along a latitudinal gradient. Molecular Ecology, 2017, 26, 1256-1272.                                                                                                                             | 3.9  | 25        |
| 17 | Single-Molecule Sequencing of the <i>Drosophila serrata</i> Genome. G3: Genes, Genomes, Genetics, 2017, 7, 781-788.                                                                                                                    | 1.8  | 24        |
| 18 | Sexual selection on spontaneous mutations strengthens the betweenâ€sex genetic correlation for fitness. Evolution; International Journal of Organic Evolution, 2017, 71, 2398-2409.                                                    | 2.3  | 8         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasites and Vectors, 2017, 10, 622.                                                                                                        | 2.5 | 25        |
| 20 | Testing for a genetic response to sexual selection in a wild <i>Drosophila</i> population. Journal of Evolutionary Biology, 2016, 29, 1278-1283.                                                                                  | 1.7 | 2         |
| 21 | Evolutionary potential of the extrinsic incubation period of dengue virus in <i>Aedes aegypti </i> Evolution; International Journal of Organic Evolution, 2016, 70, 2459-2469.                                                    | 2.3 | 30        |
| 22 | The pdm3 Locus Is a Hotspot for Recurrent Evolution of Female-Limited Color Dimorphism in Drosophila. Current Biology, 2016, 26, 2412-2422.                                                                                       | 3.9 | 57        |
| 23 | Polymorphisms in a <i>desaturase 2</i> ortholog associate with cuticular hydrocarbon and male mating success variation in aAnatural population of <i>Drosophila serrata</i> Journal of Evolutionary Biology, 2015, 28, 1600-1609. | 1.7 | 3         |
| 24 | Genomic Evidence that Sexual Selection Impedes Adaptation to a Novel Environment. Current Biology, 2015, 25, 1860-1866.                                                                                                           | 3.9 | 90        |
| 25 | Variation and selection on preference functions: a comment on Edward. Behavioral Ecology, 2015, 26, 322-323.                                                                                                                      | 2.2 | 1         |
| 26 | The Phenome-Wide Distribution of Genetic Variance. American Naturalist, 2015, 186, 15-30.                                                                                                                                         | 2.1 | 26        |
| 27 | Connecting thermal performance curve variation to the genotype: a multivariate QTL approach. Journal of Evolutionary Biology, 2015, 28, 155-168.                                                                                  | 1.7 | 12        |
| 28 | Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Neglected Tropical Diseases, 2015, 9, e0003894.                                                                                               | 3.0 | 128       |
| 29 | Pleiotropic Mutations Are Subject to Strong Stabilizing Selection. Genetics, 2014, 197, 1051-1062.                                                                                                                                | 2.9 | 38        |
| 30 | The Nature and Extent of Mutational Pleiotropy in Gene Expression of Male <i>Drosophila serrata</i> Genetics, 2014, 196, 911-921.                                                                                                 | 2.9 | 46        |
| 31 | THE CONTRIBUTION OF SPONTANEOUS MUTATIONS TO THERMAL SENSITIVITY CURVE VARIATION IN <i>DROSOPHILA SERRATA </i> <ir> <ii>i&gt;i&gt;i&gt;i&gt;i&gt;i&gt;i    IN <i>i&gt;i&gt;i&gt;i&gt;i&gt;i&gt;i&gt;i</i></ii></ir>               | 2.3 | 19        |
| 32 | SEX-SPECIFIC PATTERNS OF MORPHOLOGICAL DIVERSIFICATION: EVOLUTION OF REACTION NORMS AND STATIC ALLOMETRIES IN NERIID FLIES. Evolution; International Journal of Organic Evolution, 2014, 68, 368-383.                             | 2.3 | 22        |
| 33 | THE EVOLUTIONARY STABILITY OF CROSS-SEX, CROSS-TRAIT GENETIC COVARIANCES. Evolution; International Journal of Organic Evolution, 2014, 68, 1687-1697.                                                                             | 2.3 | 40        |
| 34 | Testing the correlated response hypothesis for the evolution and maintenance of male mating preferences in <i>Drosophila serrata</i> ). Journal of Evolutionary Biology, 2014, 27, 2106-2112.                                     | 1.7 | 6         |
| 35 | Interspecific Divergence of Transcription Networks along Lines of Genetic Variance in Drosophila:<br>Dimensionality, Evolvability, and Constraint. Molecular Biology and Evolution, 2013, 30, 1358-1367.                          | 8.9 | 21        |
| 36 | The Genomic Distribution of Sex-Biased Genes in Drosophila serrata: X Chromosome Demasculinization, Feminization, and Hyperexpression in Both Sexes. Genome Biology and Evolution, 2013, 5, 1986-1994.                            | 2.5 | 34        |

3

| #  | Article                                                                                                                                                                                                                                          | IF  | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sex-Specific Fitness Consequences of Nutrient Intake and the Evolvability of Diet Preferences. American Naturalist, 2013, 182, 91-102.                                                                                                           | 2.1 | 93        |
| 38 | Analyzing and Comparing the Geometry of Individual Fitness Surfaces. , 2013, , 126-149.                                                                                                                                                          |     | 6         |
| 39 | Physical and Linkage Maps for <i>Drosophila serrata </i> , a Model Species for Studies of Clinal Adaptation and Sexual Selection. G3: Genes, Genomes, Genetics, 2012, 2, 287-297.                                                                | 1.8 | 19        |
| 40 | The relative importance of genetic and nongenetic inheritance in relation to trait plasticity in <i><scp>C</scp>allosobruchus maculatus</i> ). Journal of Evolutionary Biology, 2012, 25, 2422-2431.                                             | 1.7 | 14        |
| 41 | THE B-MATRIX HARBORS SIGNIFICANT AND SEX-SPECIFIC CONSTRAINTS ON THE EVOLUTION OF MULTICHARACTER SEXUAL DIMORPHISM. Evolution; International Journal of Organic Evolution, 2012, 66, 2106-2116.                                                  | 2.3 | 68        |
| 42 | THE B-MATRIX HARBORS SIGNIFICANT AND SEX-SPECIFIC CONSTRAINTS ON THE EVOLUTION OF MULTICHARACTER SEXUAL DIMORPHISM. Evolution; International Journal of Organic Evolution, 2012, , no-no.                                                        | 2.3 | О         |
| 43 | On the evolution of heightened condition dependence of male sexual displays. Journal of Evolutionary Biology, 2011, 24, 685-692.                                                                                                                 | 1.7 | 43        |
| 44 | Quantitative genetic variation for thermal performance curves within and among natural populations of <i>Drosophila serrata </i>   i> Journal of Evolutionary Biology, 2011, 24, 965-975.                                                        | 1.7 | 59        |
| 45 | STRONGER CONVEX (STABILIZING) SELECTION ON HOMOLOGOUS SEXUAL DISPLAY TRAITS IN FEMALES THAN IN MALES: A MULTIPOPULATION COMPARISON IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2011, 65, 893-899.              | 2.3 | 27        |
| 46 | HIGH-DIMENSIONAL VARIANCE PARTITIONING REVEALS THE MODULAR GENETIC BASIS OF ADAPTIVE DIVERGENCE IN GENE EXPRESSION DURING REPRODUCTIVE CHARACTER DISPLACEMENT. Evolution; International Journal of Organic Evolution, 2011, 65, 3126-3137.       | 2.3 | 15        |
| 47 | CLINES IN CUTICULAR HYDROCARBONS IN TWO DROSOPHILA SPECIES WITH INDEPENDENT POPULATION HISTORIES. Evolution; International Journal of Organic Evolution, 2010, 64, 1784-1794.                                                                    | 2.3 | 70        |
| 48 | EXPERIMENTAL EVIDENCE FOR THE EVOLUTION OF INDIRECT GENETIC EFFECTS: CHANGES IN THE INTERACTION EFFECT COEFFICIENT, PSI ( $\hat{\Gamma}$ ), DUE TO SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2010, 64, 1849-1856. | 2.3 | 58        |
| 49 | Zebrafish take their cue from temperature but not photoperiod for the seasonal plasticity of thermal performance. Journal of Experimental Biology, 2010, 213, 3705-3709.                                                                         | 1.7 | 24        |
| 50 | The Contribution of Selection and Genetic Constraints to Phenotypic Divergence. American Naturalist, 2010, 175, 186-196.                                                                                                                         | 2.1 | 121       |
| 51 | The Genetic Basis of Sexually Selected Variation. Annual Review of Ecology, Evolution, and Systematics, 2010, 41, 81-101.                                                                                                                        | 8.3 | 82        |
| 52 | Effective but Costly, Evolved Mechanisms of Defense against a Virulent Opportunistic Pathogen in Drosophila melanogaster. PLoS Pathogens, 2009, 5, e1000385.                                                                                     | 4.7 | 83        |
| 53 | Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1567-1578.                                                                 | 4.0 | 88        |
| 54 | Association Mapping in Outbred Populations: Power and Efficiency When Genotyping Parents and Phenotyping Progeny. Genetics, 2009, 181, 755-765.                                                                                                  | 2.9 | 8         |

| #  | Article                                                                                                                                                                                            | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | An expressed sequence tag (EST) library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies. BMC Genomics, 2009, 10, 40.                                   | 2.8  | 26        |
| 56 | The diversification of mate preferences by natural and sexual selection. Journal of Evolutionary Biology, 2009, 22, 1608-1615.                                                                     | 1.7  | 45        |
| 57 | Intralocus sexual conflict. Trends in Ecology and Evolution, 2009, 24, 280-288.                                                                                                                    | 8.7  | 670       |
| 58 | QSTMEETS THE G MATRIX: THE DIMENSIONALITY OF ADAPTIVE DIVERGENCE IN MULTIPLE CORRELATED QUANTITATIVE TRAITS. Evolution; International Journal of Organic Evolution, 2008, 62, 1437-1449.           | 2.3  | 62        |
| 59 | Polyandry and paternity skew in natural and experimental populations of <i>Drosophila serrata</i> Molecular Ecology, 2008, 17, 1589-1596.                                                          | 3.9  | 32        |
| 60 | Genetic Constraints and the Evolution of Display Trait Sexual Dimorphism by Natural and Sexual Selection. American Naturalist, 2008, 171, 22-34.                                                   | 2.1  | 111       |
| 61 | Comparing Complex Fitness Surfaces: Amongâ€Population Variation in Mutual Sexual Selection inDrosophila serrata. American Naturalist, 2008, 171, 443-454.                                          | 2.1  | 49        |
| 62 | Natural Genetic Variation in Cuticular Hydrocarbon Expression in Male and Female Drosophila melanogaster. Genetics, 2007, 175, 1465-1477.                                                          | 2.9  | 74        |
| 63 | Predicting the age of mosquitoes using transcriptional profiles. Nature Protocols, 2007, 2, 2796-2806.                                                                                             | 12.0 | 38        |
| 64 | Male choice generates stabilizing sexual selection on a female fecundity correlate. Journal of Evolutionary Biology, 2007, 20, 1745-1750.                                                          | 1.7  | 43        |
| 65 | THE ROLES OF NATURAL AND SEXUAL SELECTION DURING ADAPTATION TO A NOVEL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2006, 60, 2218-2225.                                    | 2.3  | 104       |
| 66 | Can non-directional male mating preferences facilitate honest female ornamentation?. Ecology Letters, 2006, 9, 179-184.                                                                            | 6.4  | 98        |
| 67 | Dissecting the complex genetic basis of mate choice. Nature Reviews Genetics, 2006, 7, 681-692.                                                                                                    | 16.3 | 90        |
| 68 | THE ROLES OF NATURAL AND SEXUAL SELECTION DURING ADAPTATION TO A NOVEL ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2006, 60, 2218.                                         | 2.3  | 26        |
| 69 | The use of transcriptional profiles to predict adult mosquito age under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18060-18065. | 7.1  | 99        |
| 70 | The roles of natural and sexual selection during adaptation to a novel environment. Evolution; International Journal of Organic Evolution, 2006, 60, 2218-25.                                      | 2.3  | 34        |
| 71 | Phenotypic Divergence along Lines of Genetic Variance. American Naturalist, 2005, 165, 32-43.                                                                                                      | 2.1  | 140       |
| 72 | Divergent Selection and the Evolution of Signal Traits and Mating Preferences. PLoS Biology, 2005, 3, e368.                                                                                        | 5.6  | 167       |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6045-6050.                       | 7.1  | 135       |
| 74 | Contrasting Mutual Sexual Selection on Homologous Signal Traits in Drosophila serrata. American Naturalist, 2005, 165, 281-289.                                                                                                     | 2.1  | 235       |
| 75 | MULTIVARIATE QUANTITATIVE GENETICS AND THE LEK PARADOX: GENETIC VARIANCE IN MALE SEXUALLY SELECTED TRAITS OF DROSOPHILA SERRATA UNDER FIELD CONDITIONS. Evolution; International Journal of Organic Evolution, 2004, 58, 2754.      | 2.3  | 30        |
| 76 | Orientation of the Genetic Variance ovariance Matrix and the Fitness Surface for Multiple Male Sexually Selected Traits. American Naturalist, 2004, 163, 329-340.                                                                   | 2.1  | 237       |
| 77 | MULTIVARIATE QUANTITATIVE GENETICS AND THE LEK PARADOX: GENETIC VARIANCE IN MALE SEXUALLY SELECTED TRAITS OF DROSOPHILA SERRATA UNDER FIELD CONDITIONS. Evolution; International Journal of Organic Evolution, 2004, 58, 2754-2762. | 2.3  | 101       |
| 78 | Oceanic interchange and nonequilibrium population structure in the estuarine dependent Indoâ∈Pacific tasselfish, Polynemus sheridani. Molecular Ecology, 2003, 12, 2387-2397.                                                       | 3.9  | 33        |
| 79 | SIGNAL TRAIT SEXUAL DIMORPHISM AND MUTUAL SEXUAL SELECTION IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2003, 57, 2326-2334.                                                                       | 2.3  | 104       |
| 80 | SIGNAL TRAIT SEXUAL DIMORPHISM AND MUTUAL SEXUAL SELECTION IN DROSOPHILA SERRATA. Evolution; International Journal of Organic Evolution, 2003, 57, 2326.                                                                            | 2.3  | 13        |
| 81 | Speciation and phylogeography in Caridina indistincta, a complex of freshwater shrimps from Australian heathland streams. Marine and Freshwater Research, 2003, 54, 807.                                                            | 1.3  | 29        |
| 82 | Phylogeography of the pipefish, Urocampus carinirostris, suggests secondary intergradation of ancient lineages. Marine Biology, 2002, 141, 541-547.                                                                                 | 1.5  | 17        |
| 83 | Natural Selection and the Reinforcement of Mate Recognition. Science, 2000, 290, 519-521.                                                                                                                                           | 12.6 | 285       |
| 84 | Strong genetic structuring in a habitat specialist, the Oxleyan Pygmy Perch Nannoperca oxleyana. Heredity, 1999, 83, 5-14.                                                                                                          | 2.6  | 54        |
| 85 | Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Heredity, 1998, 80, 187-197.                                                      | 2.6  | 82        |
| 86 | When oceans meet: a teleost shows secondary intergradation at an Indian–Pacific interface. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 415-420.                                                             | 2.6  | 110       |
| 87 | Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Heredity, 1998, 80, 187-197.                                                      | 2.6  | 18        |
| 88 | Genetic population structure of the catadromous Perciform: Macquaria novemaculeata (Percichthyidae). Journal of Fish Biology, 1997, 50, 721-733.                                                                                    | 1.6  | 19        |