Irene Garcia-Higuera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/636910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient terminal erythroid differentiation requires the APC/C cofactor Cdh1 to limit replicative stress in erythroblasts. Scientific Reports, 2022, 12, .	3.3	1
2	Shortage of dNTPs underlies altered replication dynamics and DNA breakage in the absence of the APC/C cofactor Cdh1. Oncogene, 2017, 36, 5808-5818.	5.9	19
3	The APC/C activator FZR1 is essential for meiotic prophase I in mice. Development (Cambridge), 2014, 141, 1354-1365.	2.5	24
4	The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nature Communications, 2013, 4, 2880.	12.8	54
5	APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nature Communications, 2013, 4, 2879.	12.8	82
6	Reduced Chromosome Cohesion Measured by Interkinetochore Distance Is Associated with Aneuploidy Even in Oocytes from Young Mice1. Biology of Reproduction, 2013, 88, 31.	2.7	22
7	The APC activator fizzy-related-1 (FZR1) is needed for preimplantation mouse embryo development. Journal of Cell Science, 2012, 125, 6030-6037.	2.0	10
8	APC ^{FZR1} prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing. Molecular Biology of the Cell, 2012, 23, 3970-3981.	2.1	28
9	The APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes. Development (Cambridge), 2011, 138, 905-913.	2.5	54
10	Targeting Mitotic Exit Leads to Tumor Regression InÂVivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ Phosphatase. Cancer Cell, 2010, 18, 641-654.	16.8	188
11	Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nature Cell Biology, 2008, 10, 802-811.	10.3	331
12	S-phase–specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood, 2002, 100, 2414-2420.	1.4	426
13	Convergence of the Fanconi Anemia and Ataxia Telangiectasia Signaling Pathways. Cell, 2002, 109, 459-472.	28.9	421
14	Interaction of the Fanconi Anemia Proteins and BRCA1 in a Common Pathway. Molecular Cell, 2001, 7, 249-262.	9.7	1,125
15	A cytoplasmic serine protein kinase binds and may regulate the Fanconi anemia protein FANCA. Blood, 2001, 98, 3650-3657.	1.4	17
16	The Fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. Blood, 2000, 96, 3224-3230.	1.4	117
17	Carboxy terminal region of the Fanconi anemia protein, FANCG/XRCC9, is required for functional activity. Blood, 2000, 96, 1625-1632.	1.4	28
18	Complementation Analysis in Fanconi Anemia: Assignment of the Reference FA-H Patient to Group A. American Journal of Human Genetics, 2000, 67, 759-762.	6.2	115

IRENE GARCIA-HIGUERA

#	Article	IF	CITATIONS
19	The Fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. Blood, 2000, 96, 3224-3230.	1.4	4
20	Carboxy terminal region of the Fanconi anemia protein, FANCG/XRCC9, is required for functional activity. Blood, 2000, 96, 1625-1632.	1.4	0
21	Nuclear Localization of the Fanconi Anemia Protein FANCC Is Required for Functional Activity. Blood, 1999, 93, 4025-4026.	1.4	20
22	Regulated Binding of the Fanconi Anemia Proteins, FANCA and FANCC. Blood, 1999, 93, 1430-1432.	1.4	15
23	A patient-derived mutant form of the Fanconi anemia protein, FANCA, is defective in nuclear accumulation. Experimental Hematology, 1999, 27, 587-593.	0.4	35
24	Fanconi Anemia Proteins FANCA, FANCC, and FANCG/XRCC9 Interact in a Functional Nuclear Complex. Molecular and Cellular Biology, 1999, 19, 4866-4873.	2.3	226
25	The molecular and cellular biology of Fanconi anemia. Current Opinion in Hematology, 1999, 6, 83.	2.5	30
26	Regulated Binding of the Fanconi Anemia Proteins, FANCA and FANCC. Blood, 1999, 93, 1430-1432.	1.4	1
27	Folding a WD Repeat Propeller. Journal of Biological Chemistry, 1998, 273, 9041-9049.	3.4	63
28	Folding of Proteins with WD-Repeats:  Comparison of Six Members of the WD-Repeat Superfamily to the G Protein β Subunit. Biochemistry, 1996, 35, 13985-13994.	2.5	178
29	High Affinity Binding of β-Adrenergic Receptor Kinase to Microsomal Membranes. Journal of Biological Chemistry, 1996, 271, 985-994.	3.4	64
30	Intersubunit Surfaces in G Protein αβγ Heterotrimers. Journal of Biological Chemistry, 1996, 271, 528-535.	3.4	20
31	Post-transcriptional induction of β1-adrenergic receptor by retinoic acid, but not triiodothyronine, in C6 glioma cells expressing thyroid hormone receptors. European Journal of Endocrinology, 1996, 135, 709-715.	3.7	5
32	Rapid desensitization of neonatal rat liver beta-adrenergic receptors. A role for beta-adrenergic receptor kinase Journal of Clinical Investigation, 1994, 93, 937-943.	8.2	37
33	The Role of ß-Adrenergic Receptor Kinase in the Modulation of Signal Transduction. , 1994, , 129-138.		1
34	Rapid agonist-induced beta-adrenergic receptor kinase translocation in C6 glioma cells. FEBS Letters, 1992, 302, 61-64.	2.8	16