Audrey Bouvier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6368932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 2008, 273, 48-57.	4.4	2,427
2	The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 2010, 3, 637-641.	12.9	323
3	Pb–Pb dating constraints on the accretion and cooling history of chondrites. Geochimica Et Cosmochimica Acta, 2007, 71, 1583-1604.	3.9	148
4	The age of SNC meteorites and the antiquity of the Martian surface. Earth and Planetary Science Letters, 2005, 240, 221-233.	4.4	123
5	Martian meteorite chronology and the evolution of the interior of Mars. Earth and Planetary Science Letters, 2009, 280, 285-295.	4.4	121
6	The case for old basaltic shergottites. Earth and Planetary Science Letters, 2008, 266, 105-124.	4.4	117
7	Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites. Earth and Planetary Science Letters, 2010, 300, 359-366.	4.4	110
8	Primitive Solar System materials and Earth share a common initial 142Nd abundance. Nature, 2016, 537, 399-402.	27.8	85
9	PLANETARY-SCALE STRONTIUM ISOTOPIC HETEROGENEITY AND THE AGE OF VOLATILE DEPLETION OF EARLY SOLAR SYSTEM MATERIALS. Astrophysical Journal, 2012, 758, 45.	4.5	83
10	New constraints on early Solar System chronology from Al–Mg and U–Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochimica Et Cosmochimica Acta, 2011, 75, 5310-5323.	3.9	66
11	The Meteoritical Bulletin, No. 102. Meteoritics and Planetary Science, 2015, 50, 1662-1662.	1.6	53
12	Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters, 2017, 469, 75-83.	4.4	44
13	Europium isotopic variations in Allende CAIs and the nature of mass-dependent fractionation in the solar nebula. Geochimica Et Cosmochimica Acta, 2006, 70, 4287-4294.	3.9	41
14	The Meteoritical Bulletin, No. 104. Meteoritics and Planetary Science, 2017, 52, 2284-2284.	1.6	38
15	Enstatite chondrites EL3 as building blocks for the Earth: The debate over the 146Sm–142Nd systematics. Earth and Planetary Science Letters, 2018, 488, 68-78.	4.4	36
16	The Meteoritical Bulletin, No. 106. Meteoritics and Planetary Science, 2019, 54, 469-471.	1.6	35
17	Accretion of the Earth—Missing Components?. Space Science Reviews, 2020, 216, 1.	8.1	32
18	The Meteoritical Bulletin, No. 105. Meteoritics and Planetary Science, 2017, 52, 2411-2411.	1.6	28

2

AUDREY BOUVIER

#	Article	IF	CITATIONS
19	The Meteoritical Bulletin, No. 103. Meteoritics and Planetary Science, 2017, 52, 1014-1014.	1.6	27
20	The Meteoritical Bulletin, No. 107. Meteoritics and Planetary Science, 2020, 55, 460-462.	1.6	27
21	The Meteoritical Bulletin, no. 108. Meteoritics and Planetary Science, 2020, 55, 1146-1150.	1.6	26
22	Metamorphosed calciumâ€aluminumâ€rich inclusions in <scp>CK</scp> carbonaceous chondrites. Meteoritics and Planetary Science, 2014, 49, 419-452.	1.6	23
23	Magnesium isotopic fractionation in chondrules from the Murchison and Murray <scp>CM</scp> 2 carbonaceous chondrites. Meteoritics and Planetary Science, 2013, 48, 339-353.	1.6	22
24	¹⁴⁷ Smâ€ ¹⁴³ Nd and ¹⁷⁶ Luâ€ ¹⁷⁶ Hf systematics of eucrite a angrite meteorites. Meteoritics and Planetary Science, 2015, 50, 1896-1911.	and 1.6	20
25	The timing of prograde metamorphism in the Pontiac Subprovince, Superior craton; implications for Archean geodynamics and gold mineralization. Precambrian Research, 2019, 320, 111-136.	2.7	20
26	Barium stable isotope composition of the Earth, meteorites, and calcium–aluminum-rich inclusions. Chemical Geology, 2015, 413, 1-6.	3.3	17
27	Half-life and initial Solar System abundance of ¹⁴⁶ Sm determined from the oldest andesitic meteorite. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120933119.	7.1	17
28	40Ar/39Ar impact ages and time–temperature argon diffusion history of the Bunburra Rockhole anomalous basaltic achondrite. Geochimica Et Cosmochimica Acta, 2014, 140, 391-409.	3.9	14
29	Formation of the Ce-Nd mantle array: Crustal extraction vs. recycling by subduction. Earth and Planetary Science Letters, 2020, 530, 115941.	4.4	14
30	Two-stage formation of pallasites and the evolution of their parent bodies revealed by deformation experiments. Earth and Planetary Science Letters, 2020, 546, 116419.	4.4	12
31	Evidence from achondrites for a temporal change in Nd nucleosynthetic anomalies within the first 1.5 million years of the inner solar system formation. Earth and Planetary Science Letters, 2021, 566, 116968.	4.4	12
32	Imbrium Age for Zircons in Apollo 17 South Massif Impact Melt Breccia 73155. Journal of Geophysical Research E: Planets, 2019, 124, 3205-3218.	3.6	11
33	Evidence for anorthositic crust formed on an inner solar system planetesimal. Geochemical Perspectives Letters, 0, , 28-32.	5.0	10
34	Timing of lunar Mg-suite magmatism constrained by SIMS U-Pb dating of Apollo norite 78238. Earth and Planetary Science Letters, 2021, 569, 117046.	4.4	6
35	Effects of pebble accretion on the growth and composition of planetesimals in the inner Solar system. Monthly Notices of the Royal Astronomical Society, 2022, 511, 158-175.	4.4	6
36	Raman spectroscopy of shocked enstatiteâ€rich meteorites. Meteoritics and Planetary Science, 2018, 53, 2067-2077.	1.6	5

AUDREY BOUVIER

#	Article	IF	CITATIONS
37	Geochemistry and chronology of the Bunburra Rockhole ungrouped achondrite. Meteoritics and Planetary Science, 2015, 50, 958-975.	1.6	4
38	Influence of provenance and transport process on the geochemistry and radiogenic (Hf, Nd, and Sr) isotopic composition of Pleistocene glacial sediments, Minnesota, USA. Chemical Geology, 2020, 532, 119390.	3.3	4
39	The fall, recovery, classification, and initial characterization of the Hamburg, Michigan H4 chondrite. Meteoritics and Planetary Science, 2020, 55, 2341-2359.	1.6	4
40	Radiogenic Pb mobilization induced by shock metamorphism of zircons in the Apollo 72255 Civet Cat norite clast. Geochimica Et Cosmochimica Acta, 2021, 302, 175-192.	3.9	4
41	Comment on "Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of accessory minerals―by Zhou et al Earth and Planetary Science Letters, 2014, 385, 216-217.	4.4	3
42	Metamorphism of the Mougooderra Formation: Implications for Neoarchean tectonics in the western Youanmi Terrane, Yilgarn Craton. Precambrian Research, 2020, 350, 105862.	2.7	3
43	Best practices for the use of meteorite names in publications. Meteoritics and Planetary Science, 2019, 54, 1397-1400.	1.6	2
44	Evidence of a primordial isotopic gradient in the inner region of the solar protoplanetary disc. Astronomy and Astrophysics, 2022, 660, A36.	5.1	2
45	Meteorites (Lu–Hf). Encyclopedia of Earth Sciences Series, 2015, , 555-559.	0.1	0
46	Garnet Geochemistry and Lu-Hf Geochronology of a Gold-Bearing Sillimanite-Garnet-Biotite Gneiss at the Borden Lake Belt. Geosciences (Switzerland), 2022, 12, 218.	2.2	0