
Patrycja Nowak-Sliwinska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6366916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular vimentin mimics VEGF and is a target for anti-angiogenic immunotherapy. Nature Communications, 2022, 13, .	12.8	27
2	A quarter century of Apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 233-234.	4.9	4
3	Forcing dividing cancer cells to die; lowâ€dose drug combinations to prevent spindle pole clustering. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 248-252.	4.9	3
4	Anti-angiogenic agents — overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nature Reviews Clinical Oncology, 2021, 18, 527-540.	27.6	162
5	Characterization of Renal Cell Carcinoma Heterotypic 3D Co-Cultures with Immune Cell Subsets. Cancers, 2021, 13, 2551.	3.7	12
6	Molecular and Functional Analysis of Sunitinib-Resistance Induction in Human Renal Cell Carcinoma Cells. International Journal of Molecular Sciences, 2021, 22, 6467.	4.1	12
7	COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis, 2021, 24, 755-788.	7.2	114
8	Drug Repurposing to Identify a Synergistic High-Order Drug Combination to Treat Sunitinib-Resistant Renal Cell Carcinoma. Cancers, 2021, 13, 3978.	3.7	12
9	Optimization for multidrug combinations: Challenges and perspectives in complex disorders. Pharmacological Research, 2020, 154, 104165.	7.1	2
10	Integrating Phenotypic Search and Phosphoproteomic Profiling of Active Kinases for Optimization of Drug Mixtures for RCC Treatment. Cancers, 2020, 12, 2697.	3.7	11
11	Optimized lowâ€dose combinatorial drug treatment boosts selectivity and efficacy of colorectal carcinoma treatment. Molecular Oncology, 2020, 14, 2894-2919.	4.6	20
12	Optimized Combination of HDACI and TKI Efficiently Inhibits Metabolic Activity in Renal Cell Carcinoma and Overcomes Sunitinib Resistance. Cancers, 2020, 12, 3172.	3.7	17
13	Drug-Drug Interactions of Irinotecan, 5-Fluorouracil, Folinic Acid and Oxaliplatin and Its Activity in Colorectal Carcinoma Treatment. Molecules, 2020, 25, 2614.	3.8	30
14	Patient-Derived In Vitro Models for Drug Discovery in Colorectal Carcinoma. Cancers, 2020, 12, 1423.	3.7	25
15	Programmed death, cells on the last train to glory. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 151-153.	4.9	3
16	Identification of low-dose multidrug combinations for sunitinib-naive and pre-treated renal cell carcinoma. British Journal of Cancer, 2020, 123, 556-567.	6.4	16
17	Recent Considerations in the Application of RAPTA for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. Advanced Therapeutics, 2019, 2, 1900042.	3.2	57
18	Identification of a Synergistic Multi-Drug Combination Active in Cancer Cells via the Prevention of Spindle Pole Clustering. Cancers, 2019, 11, 1612.	3.7	25

#	Article	IF	CITATIONS
19	The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis. Scientific Reports, 2019, 9, 12608.	3.3	113
20	Anti-angiogenic effects of crenolanib are mediated by mitotic modulation independently of PDGFR expression. British Journal of Cancer, 2019, 121, 139-149.	6.4	12
21	Towards Lightâ€Activated Ruthenium–Arene (RAPTAâ€Type) Prodrug Candidates. ChemBioChem, 2019, 20, 2876-2882.	2.6	30
22	Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Scientific Reports, 2019, 9, 7103.	3.3	95
23	Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 434-454.	7.4	131
24	Cell death rocks. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 205-207.	4.9	3
25	Colorectal Cancer Growth Retardation through Induction of Apoptosis, Using an Optimized Synergistic Cocktail of Axitinib, Erlotinib, and Dasatinib. Cancers, 2019, 11, 1878.	3.7	13
26	Oncofoetal insulin receptor isoform A marks the tumour endothelium; an underestimated pathway during tumour angiogenesis and angiostatic treatment. British Journal of Cancer, 2019, 120, 218-228.	6.4	20
27	An improved conjugate vaccine technology; induction of antibody responses to the tumor vasculature. Vaccine, 2018, 36, 3054-3060.	3.8	21
28	Development of an Efficient Dualâ€Action GSTâ€Inhibiting Anticancer Platinum(IV) Prodrug. ChemMedChem, 2018, 13, 1210-1217.	3.2	40
29	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	7.2	429
30	IGF2 and IGF1R identified as novel tip cell genes in primary microvascular endothelial cell monolayers. Angiogenesis, 2018, 21, 823-836.	7.2	30
31	Targeting PDGFâ€mediated recruitment of pericytes blocks vascular mimicry and tumor growth. Journal of Pathology, 2018, 246, 447-458.	4.5	67
32	Apoptosis on the move. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 251-254.	4.9	7
33	Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Scientific Reports, 2017, 7, 43005.	3.3	97
34	Current Trends in Multidrug Optimization. Journal of the Association for Laboratory Automation, 2017, , 221106821668233.	2.8	10
35	Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment. Angiogenesis, 2017, 20, 245-267.	7.2	25
36	miRNAs: micro-managers of anticancer combination therapies. Angiogenesis, 2017, 20, 269-285.	7.2	55

#	Article	IF	CITATIONS
37	Spectral Characteristic and Preliminary Anticancer Activity <i>in vitro</i> of Selected Rhodanineâ€3 arboxylic Acids Derivatives. Journal of Heterocyclic Chemistry, 2017, 54, 2889-2897.	2.6	11
38	Current Trends in Multidrug Optimization: An Alley of Future Successful Treatment of Complex Disorders. SLAS Technology, 2017, 22, 254-275.	1.9	33
39	Angiogenesis inhibitors in combinatorial approaches. Angiogenesis, 2017, 20, 183-184.	7.2	5
40	A genomic screen for angiosuppressor genes in the tumor endothelium identifies a multifaceted angiostatic role for bromodomain containing 7 (BRD7). Angiogenesis, 2017, 20, 641-654.	7.2	16
41	Apoptosis turns 21. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1485-1486.	4.9	6
42	Insulinâ€like growth factor axis targeting in cancer and tumour angiogenesis–Âthe missing link. Biological Reviews, 2017, 92, 1755-1768.	10.4	32
43	Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. Mutation Research - Reviews in Mutation Research, 2017, 773, 242-262.	5.5	25
44	A key role for galectinâ€1 in sprouting angiogenesis revealed by novel rationally designed antibodies. International Journal of Cancer, 2016, 139, 824-835.	5.1	21
45	Chlorambucil conjugates of dinuclear p-cymene ruthenium trithiolato complexes: synthesis, characterization and cytotoxicity study in vitro and in vivo. Journal of Biological Inorganic Chemistry, 2016, 21, 443-452.	2.6	26
46	Anti-angiogenic properties of chlorambucil derivatives with fluorous and hydrocarbon appendages. MedChemComm, 2016, 7, 1596-1603.	3.4	3
47	Optimization of drug combinations using Feedback System Control. Nature Protocols, 2016, 11, 302-315.	12.0	86
48	Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resistance Updates, 2016, 25, 26-37.	14.4	88
49	Angiostatic treatment prior to chemo- or photodynamic therapy improves anti-tumor efficacy. Scientific Reports, 2015, 5, 8990.	3.3	58
50	A streamlined search technology for identification of synergistic drug combinations. Scientific Reports, 2015, 5, 14508.	3.3	72
51	Anticancer Organometallic Osmium(II)â€ <i>p</i> ymene Complexes. ChemMedChem, 2015, 10, 1539-1547.	3.2	23
52	Improved Angiostatic Activity of Dasatinib by Modulation with Hydrophobic Chains. ACS Medicinal Chemistry Letters, 2015, 6, 313-317.	2.8	16
53	Antiangiogenic and Anticancer Properties of Bifunctional Ruthenium(II)– <i>p</i> -Cymene Complexes: Influence of Pendant Perfluorous Chains. Molecular Pharmaceutics, 2015, 12, 3089-3096.	4.6	27
54	Increasing the selectivity of biologically active tetranuclear arene ruthenium assemblies. Journal of Organometallic Chemistry, 2015, 796, 59-64.	1.8	11

#	Article	IF	CITATIONS
55	Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer. Angiogenesis, 2015, 18, 233-244.	7.2	108
56	In vivo evaluation of small-molecule thermoresponsive anticancer drugs potentiated by hyperthermia. Chemical Science, 2015, 6, 2795-2801.	7.4	25
57	The Great Escape; the Hallmarks of Resistance to Antiangiogenic Therapy. Pharmacological Reviews, 2015, 67, 441-461.	16.0	190
58	Modulating the Anticancer Activity of Ruthenium(II)–Arene Complexes. Journal of Medicinal Chemistry, 2015, 58, 3356-3365.	6.4	99
59	Thermoresponsive fluorinated small-molecule drugs: a new concept for efficient localized chemotherapy. MedChemComm, 2015, 6, 2054-2062.	3.4	15
60	Discovery of a low order drug-cell response surface for applications in personalized medicine. Physical Biology, 2014, 11, 065003.	1.8	29
61	<i>In vivo</i> anti-tumor activity of the organometallic ruthenium(<scp>ii</scp>)-arene complex [Ru(η ⁶ - <i>p</i> -cymene)Cl ₂ (pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chemical Science, 2014, 5, 4742-4748.	7.4	224
62	Lowâ€dose angiostatic tyrosine kinase inhibitors improve photodynamic therapy for cancer: lack of vascular normalization. Journal of Cellular and Molecular Medicine, 2014, 18, 480-491.	3.6	46
63	<i>In vivo</i> measurement of tissue oxygenation by time-resolved luminescence spectroscopy: advantageous properties of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate. Journal of Biomedical Optics, 2014, 19, 077004.	2.6	22
64	Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. Angiogenesis, 2014, 17, 347-357.	7.2	29
65	Thermoresponsive organometallic arene ruthenium complexes for tumour targeting. Chemical Science, 2014, 5, 1097.	7.4	59
66	Highly water soluble trithiolato-bridged dinuclear arene ruthenium complexes. Inorganica Chimica Acta, 2014, 423, 524-529.	2.4	14
67	Discovery of a Highly Tumor-Selective Organometallic Ruthenium(II)–Arene Complex. Journal of Medicinal Chemistry, 2014, 57, 3546-3558.	6.4	60
68	The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis, 2014, 17, 779-804.	7.2	334
69	The emerging quest for the optimal angiostatic combination therapy. Biochemical Society Transactions, 2014, 42, 1608-1615.	3.4	19
70	Interfering with UDP-GlcNAc Metabolism and Heparan Sulfate Expression Using a Sugar Analogue Reduces Angiogenesis. ACS Chemical Biology, 2013, 8, 2331-2338.	3.4	32
71	Photodynamic therapy for polypoidal choroidal vasculopathy. Progress in Retinal and Eye Research, 2013, 37, 182-199.	15.5	82
72	Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters. Scientific Reports, 2013, 3, 1485.	3.3	47

#	Article	IF	CITATIONS
73	Real-time, <i>in vivo</i> measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy. Journal of Biomedical Optics, 2012, 17, 115007.	2.6	41
74	Rapid Angiogenesis Onset after Discontinuation of Sunitinib Treatment of Renal Cell Carcinoma Patients. Clinical Cancer Research, 2012, 18, 3961-3971.	7.0	138
75	Angiogenesis inhibition by the maleimide-based small molecule GNX-686. Microvascular Research, 2012, 83, 105-110.	2.5	15
76	Angiostatic kinase inhibitors to sustain photodynamic angioâ€occlusion. Journal of Cellular and Molecular Medicine, 2012, 16, 1553-1562.	3.6	43
77	Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology?. Journal of Cellular and Molecular Medicine, 2012, 16, 2035-2048.	3.6	52
78	Anti-Angiogenic Treatment for Exudative Age-Related Macular Degeneration: New Strategies are Underway. Current Angiogenesis, 2012, 1, 318-334.	0.1	5
79	Angiogenesis inhibition for the improvement of photodynamic therapy: The revival of a promising idea. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 53-70.	7.4	37
80	Effect of preoperative antiangiogenic treatment and subsequent discontinuation on angiogenesis in the primary tumor in patients with RCC Journal of Clinical Oncology, 2012, 30, 350-350.	1.6	2
81	Organometallic Ruthenium(II) Arene Compounds with Antiangiogenic Activity. Journal of Medicinal Chemistry, 2011, 54, 3895-3902.	6.4	229
82	Study of the pO2-Sensitivity of the Dendrimeric and Free Forms of Pd-meso-tetra(4-carboxyphenyl)porphyrin, Incorporated or not in Chitosan-Based Nanoparticles. Chimia, 2011, 65, 691.	0.6	9
83	Angiostasis-induced vascular normalization can improve photodynamic therapy. Cellular and Molecular Life Sciences, 2010, 67, 1559-1560.	5.4	11
84	Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane. Angiogenesis, 2010, 13, 281-292.	7.2	77
85	The Neovessel Occlusion Efficacy of 15 ¹ â€Hydroxypurpurinâ€7â€Lactone Dimethyl Ester Induced with Photodynamic Therapy. Photochemistry and Photobiology, 2010, 86, 397-402.	2.5	29
86	Processing of fluorescence angiograms for the quantification of vascular effects induced by anti-angiogenic agents in the CAM model. Microvascular Research, 2010, 79, 21-28.	2.5	60
87	In Vitro and In Vivo Photocytotoxicity of Boron Dipyrromethene Derivatives for Photodynamic Therapy. Journal of Medicinal Chemistry, 2010, 53, 2865-2874.	6.4	311
88	Vascular effects induced by anti-VEGF agents in the CAM model: effect of the DMSO. , 2009, , .		3
89	Verteporfin, photofrin II, and merocyanine 540 as PDT photosensitizers against melanoma cells. Biochemical and Biophysical Research Communications, 2006, 349, 549-555.	2.1	54
90	Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas Acta Biochimica Polonica, 2002, 49, 387-391.	0.5	133