W M Grundy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6365757/publications.pdf Version: 2024-02-01

218 papers	8,837 citations	³⁶³⁰³ 51 h-index	62596 80 g-index
			0.5.5.0
223 all docs	223 docs citations	223 times ranked	3552 citing authors

WM CRUNDY

#	Article	IF	CITATIONS
1	Evaluation of short-term temporal evolution of Pluto's surface composition from 2014–2017 with APO/TripleSpec. Icarus, 2022, 373, 114729.	2.5	4
2	Volatile transport modeling on Triton with new observational constraints. Icarus, 2022, 373, 114764.	2.5	7
3	Tracing seasonal trends across Pluto's craters: New Horizons Ralph/MVIC results. Icarus, 2022, 373, 114771.	2.5	1
4	Hypotheses for Triton's plumes: New analyses and future remote sensing tests. Icarus, 2022, 375, 114835.	2.5	6
5	A CO ₂ Cycle on Ariel? Radiolytic Production and Migration to Low-latitude Cold Traps. Planetary Science Journal, 2022, 3, 8.	3.6	9
6	Anomalous Flux in the Cosmic Optical Background Detected with New Horizons Observations. Astrophysical Journal Letters, 2022, 927, L8.	8.3	32
7	Large-scale cryovolcanic resurfacing on Pluto. Nature Communications, 2022, 13, 1542.	12.8	15
8	A Near-surface Temperature Model of Arrokoth. Planetary Science Journal, 2022, 3, 110.	3.6	9
9	A Predicted Dearth of Majority Hypervolatile Ices in Oort Cloud Comets. Planetary Science Journal, 2022, 3, 112.	3.6	15
10	Detection of Radio Thermal Emission from the Kuiper Belt Object (486958) Arrokoth during the New Horizons Encounter. Planetary Science Journal, 2022, 3, 109.	3.6	3
11	Snow Crash: Compaction Craters on (486958) Arrokoth and Other Small KBOs, With Implications. Geophysical Research Letters, 2022, 49, .	4.0	3
12	Cryovolcanic flooding in Viking Terra on Pluto. Icarus, 2021, 356, 113786.	2.5	9
13	Global compositional cartography of Pluto from intensity-based registration of LEISA data. Icarus, 2021, 356, 113833.	2.5	9
14	Distribution and energy balance of Pluto's nitrogen ice, as seen by New Horizons in 2015. Icarus, 2021, 356, 113633.	2.5	6
15	The Eris/Dysnomia system I: The orbit of Dysnomia. Icarus, 2021, 355, 114130.	2.5	11
16	Compositional Study of Trans-Neptunian Objects at λÂ>Â2.2 μm. Planetary Science Journal, 2021, 2, 10.	3.6	7
17	Binary Planetesimal Formation from Gravitationally Collapsing Pebble Clouds. Planetary Science Journal, 2021, 2, 27.	3.6	21
18	A statistical review of light curves and the prevalence of contact binaries in the Kuiper Belt. Icarus, 2021, 356, 114098.	2.5	10

#	Article	IF	CITATIONS
19	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 4. Final mission observations. Icarus, 2021, 357, 114261.	2.5	10
20	On the origin & amp; thermal stability of Arrokoth's and Pluto's ices. Icarus, 2021, 356, 114072.	2.5	31
21	The orbit of asteroid (317) Roxane's satellite Olympias from Gemini, Keck, VLT and the SOR, and (22) Kalliope's Linus from the SOR. Icarus, 2021, 358, 114275.	2.5	8
22	Some New Results and Perspectives Regarding the Kuiper Belt Object Arrokoth's Remarkable, Bright Neck. Planetary Science Journal, 2021, 2, 87.	3.6	8
23	Pluto's Sputnik Planitia: Composition of geological units from infrared spectroscopy. Icarus, 2021, 359, 114303.	2.5	5
24	Phase Diagram for the Methane–Ethane System and Its Implications for Titan's Lakes. Planetary Science Journal, 2021, 2, 118.	3.6	8
25	The Science Case for Spacecraft Exploration of the Uranian Satellites: Candidate Ocean Worlds in an Ice Giant System. Planetary Science Journal, 2021, 2, 120.	3.6	19
26	Triton: Fascinating Moon, Likely Ocean World, Compelling Destination!. Planetary Science Journal, 2021, 2, 137.	3.6	15
27	High-resolution radiometry of Pluto at 4.2Âcm with New Horizons. Icarus, 2021, 363, 114430.	2.5	1
28	Lucy Mission to the Trojan Asteroids: Science Goals. Planetary Science Journal, 2021, 2, 171.	3.6	54
29	The Orbit and Density of the Jupiter Trojan Satellite System Eurybates–Queta. Planetary Science Journal, 2021, 2, 170.	3.6	10
30	Density, Enthalpy of Vaporization and Local Structure of Neat N-Alkane Liquids. Liquids, 2021, 1, 47-59.	2.5	3
31	Lucy Mission to the Trojan Asteroids: Instrumentation and Encounter Concept of Operations. Planetary Science Journal, 2021, 2, 172.	3.6	21
32	Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon. Remote Sensing, 2021, 13, 3476.	4.0	7
33	Testing tholins as analogues of the dark reddish material covering Pluto's Cthulhu region. Icarus, 2021, 367, 114574.	2.5	6
34	New Horizons Observations of the Cosmic Optical Background. Astrophysical Journal, 2021, 906, 77.	4.5	42
35	New Investigations of Dark-floored Pits In the Volatile Ice of Sputnik Planitia on Pluto. Astronomical Journal, 2021, 162, 207.	4.7	2
36	Landslides on Charon. Icarus, 2020, 335, 113383.	2.5	12

#	Article	IF	CITATIONS
37	Spectrophotometry from Mars Hand Lens Imager goniometer measurements: Kimberley region, Gale crater. Icarus, 2020, 335, 113361.	2.5	5
38	Trans-Neptunian binaries (2018). , 2020, , 205-224.		14
39	The Pluto system after New Horizons. , 2020, , 271-288.		9
40	Pluto and Charon as templates for other large Trans-Neptunian objects. , 2020, , 291-305.		1
41	Probing the regoliths of the classical Uranian satellites: Are their surfaces mantled by a layer of tiny H2O ice grains?. Icarus, 2020, 338, 113513.	2.5	15
42	Equatorial mountains on Pluto are covered by methane frosts resulting from a unique atmospheric process. Nature Communications, 2020, 11, 5056.	12.8	12
43	Organic Components of Small Bodies in the Outer Solar System: Some Results of the New Horizons Mission. Life, 2020, 10, 126.	2.4	7
44	Very Slow Rotators from Tidally Synchronized Binaries. Astrophysical Journal Letters, 2020, 893, L16.	8.3	9
45	The Complex Rotational Light Curve of (385446) Manwë–Thorondor, a Multicomponent Eclipsing System in the Kuiper Belt. Astronomical Journal, 2020, 159, 27.	4.7	1
46	Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	64
47	The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	76
48	The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science, 2020, 367, .	12.6	79
49	Disk-resolved Photometric Properties of Pluto and the Coloring Materials across its Surface. Astronomical Journal, 2020, 159, 74.	4.7	18
50	Evidence for Ammonia-bearing Species on the Uranian Satellite Ariel Supports Recent Geologic Activity. Astrophysical Journal Letters, 2020, 898, L22.	8.3	38
51	Evidence for Sulfur-bearing Species on Callisto's Leading Hemisphere: Sourced from Jupiter's Irregular Satellites or Io?. Astrophysical Journal Letters, 2020, 902, L38.	8.3	9
52	Stratification Dynamics of Titan's Lakes via Methane Evaporation. Planetary Science Journal, 2020, 1, 26.	3.6	10
53	Detection of a Satellite of the Trojan Asteroid (3548) Eurybates—A Lucy Mission Target. Planetary Science Journal, 2020, 1, 44.	3.6	13
54	A New Two-molecule Combination Band as a Diagnostic of Carbon Monoxide Diluted in Nitrogen Ice on Triton. Astronomical Journal, 2019, 158, 17.	4.7	6

#	Article	IF	CITATIONS
55	The mass and density of the dwarf planet (225088) 2007 OR10. Icarus, 2019, 334, 3-10.	2.5	16
56	The nature and origin of Charon's smooth plains. Icarus, 2019, 323, 16-32.	2.5	26
57	Geologic Landforms and Chronostratigraphic History of Charon as Revealed by a Hemispheric Geologic Map. Journal of Geophysical Research E: Planets, 2019, 124, 155-174.	3.6	11
58	Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 2019, 3, 808-812.	10.1	102
59	Detection of ammonia on Pluto's surface in a region of geologically recent tectonism. Science Advances, 2019, 5, eaav5731.	10.3	49
60	Initial results from the New Horizons exploration of 2014 MU ₆₉ , a small Kuiper Belt object. Science, 2019, 364, .	12.6	113
61	The CH4 cycles on Pluto over seasonal and astronomical timescales. Icarus, 2019, 329, 148-165.	2.5	38
62	Recent cryovolcanism in Virgil Fossae on Pluto. Icarus, 2019, 330, 155-168.	2.5	45
63	Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science, 2019, 363, 955-959.	12.6	116
64	New Horizons Photometry of Pluto's Moon Charon. Astrophysical Journal Letters, 2019, 874, L3.	8.3	8
65	Prebiotic Chemistry of Pluto. Astrobiology, 2019, 19, 831-848.	3.0	26
66	Mutual orbit orientations of transneptunian binaries. Icarus, 2019, 334, 62-78.	2.5	35
67	Kuiper Belt object 2014MU ₆₉ , Pluto and Phoebe as windows on the composition of the early solar nebula. Proceedings of the International Astronomical Union, 2019, 15, 91-95.	0.0	1
68	Spectroscopy of Pluto and Its Satellites. , 2019, , 442-452.		0
69	The distribution of H2O, CH3OH, and hydrocarbon-ices on Pluto: Analysis of New Horizons spectral images. Icarus, 2019, 331, 148-169.	2.5	21
70	Radio thermal emission from Pluto and Charon during the New Horizons encounter. Icarus, 2019, 322, 192-209.	2.5	8
71	The mutual orbit, mass, and density of transneptunian binary GǃkúnÇʰhòmdÃmà (229762 2007 UK126). Icarus, 2019, 334, 30-38.	2.5	27
72	sbpy: A Python module for small-body planetary astronomy. Journal of Open Source Software, 2019, 4, 1426.	4.6	28

#	Article	IF	CITATIONS
73	The upcoming mutual event season for the Patroclus–Menoetius Trojan binary. Icarus, 2018, 305, 198-202.	2.5	11
74	TheÂnitrogenÂcyclesÂonÂPlutoÂoverÂseasonalÂand astronomicalÂtimescales. Icarus, 2018, 309, 277-296.	2.5	54
75	Albedo matters: Understanding runaway albedo variations on Pluto. Icarus, 2018, 303, 1-9.	2.5	17
76	Bladed Terrain on Pluto: Possible origins and evolution. Icarus, 2018, 300, 129-144.	2.5	47
77	lces on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations. Icarus, 2018, 300, 21-32.	2.5	38
78	Investigation of Charon's Craters With Abrupt Terminus Ejecta, Comparisons With Other Icy Bodies, and Formation Implications. Journal of Geophysical Research E: Planets, 2018, 123, 20-36.	3.6	9
79	Recent Advancements and Motivations of Simulated Pluto Experiments. Space Science Reviews, 2018, 214, 1.	8.1	2
80	The Pluto System After <i>New Horizons</i> . Annual Review of Astronomy and Astrophysics, 2018, 56, 357-392.	24.3	72
81	Composition of Pluto's small satellites: Analysis of New Horizons spectral images. Icarus, 2018, 315, 30-45.	2.5	49
82	Dunes on Pluto. Science, 2018, 360, 992-997.	12.6	81
83	Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy Moon Charon from New Horizons. Icarus, 2018, 315, 124-145.	2.5	29
84	Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU ₆₉ ("Ultima Thuleâ€). Geophysical Research Letters, 2018, 45, 8111-8120.	4.0	14
85	Pluto's haze as a surface material. Icarus, 2018, 314, 232-245.	2.5	50
86	Methane distribution on Pluto as mapped by the New Horizons Ralph/MVIC instrument. Icarus, 2018, 314, 195-209.	2.5	14
87	Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons. Icarus, 2018, 314, 400-433.	2.5	75
88	A Survey of Pluto's Surface Composition. , 2018, , 3-13.		0
89	Inflight radiometric calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC). Icarus, 2017, 287, 140-151.	2.5	14
90	Geological mapping of Sputnik Planitia on Pluto. Icarus, 2017, 287, 261-286.	2.5	52

#	Article	IF	CITATIONS
91	Pluto: Pits and mantles on uplands north and east of Sputnik Planitia. Icarus, 2017, 293, 218-230.	2.5	24
92	Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus, 2017, 287, 229-260.	2.5	99
93	Measuring temperature and ammonia hydrate ice on Charon in 2015 from Keck/OSIRIS spectra. Icarus, 2017, 284, 394-406.	2.5	15
94	Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus, 2017, 287, 218-228.	2.5	95
95	The Global Color of Pluto from New Horizons. Astronomical Journal, 2017, 154, 258.	4.7	25
96	Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus, 2017, 287, 207-217.	2.5	82
97	Climate zones on Pluto and Charon. Icarus, 2017, 287, 30-36.	2.5	34
98	Sublimation as a landform-shaping process on Pluto. Icarus, 2017, 287, 320-333.	2.5	51
99	Long-term surface temperature modeling of Pluto. Icarus, 2017, 287, 37-46.	2.5	55
100	Charon's light curves, as observed by New Horizons' Ralph color camera (MVIC) on approach to the Pluto system. Icarus, 2017, 287, 152-160.	2.5	2
101	Craters of the Pluto-Charon system. Icarus, 2017, 287, 187-206.	2.5	59
102	Origin of the Pluto–Charon system: Constraints from the New Horizons flyby. Icarus, 2017, 287, 2-11.	2.5	99
103	The rapid formation of Sputnik Planitia early in Pluto's history. Nature, 2016, 540, 97-99.	27.8	34
104	The spectrum of Pluto, 0.40–0.93 <i>μ</i> m. Astronomy and Astrophysics, 2016, 585, A131.	5.1	15
105	OSSOS. IV. DISCOVERY OF A DWARF PLANET CANDIDATE IN THE 9:2 RESONANCE WITH NEPTUNE. Astronomical Journal, 2016, 152, 212.	4.7	17
106	Physical Characterization of TNOs with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018010.	3.1	11
107	On the surface composition of Triton's southern latitudes. Icarus, 2016, 267, 255-266.	2.5	35
108	THE OUTER SOLAR SYSTEM ORIGINS SURVEY. I. DESIGN AND FIRST-QUARTER DISCOVERIES. Astronomical Journal, 2016, 152, 70.	4.7	105

#	Article	IF	CITATIONS
109	Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature, 2016, 540, 94-96.	27.8	108
110	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	27.8	44
111	DISCOVERY OF A MAKEMAKEAN MOON. Astrophysical Journal Letters, 2016, 825, L9.	8.3	51
112	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	12.6	201
113	Pluto's interaction with its space environment: Solar wind, energetic particles, and dust. Science, 2016, 351, aad9045.	12.6	60
114	The small satellites of Pluto as observed by New Horizons. Science, 2016, 351, aae0030.	12.6	78
115	The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351, 1284-1293.	12.6	219
116	Surface compositions across Pluto and Charon. Science, 2016, 351, aad9189.	12.6	242
117	Observing Outer Planet Satellites (Except Titan) with the <i>James Webb Space Telescope</i> : Science Justification and Observational Requirements. Publications of the Astronomical Society of the Pacific, 2016, 128, 018006.	3.1	7
118	Introduction to the Pluto system science special issue. Icarus, 2015, 246, 1.	2.5	0
119	The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmarë. Icarus, 2015, 257, 130-138.	2.5	31
120	Absorption coefficients of the methane–nitrogen binary ice system: Implications for Pluto. Icarus, 2015, 253, 179-188.	2.5	26
121	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	12.6	407
122	Ejecta transfer in the Pluto system. Icarus, 2015, 246, 360-368.	2.5	11
123	Geology before Pluto: Pre-encounter considerations. Icarus, 2015, 246, 65-81.	2.5	29
124	The surface compositions of Pluto and Charon. Icarus, 2015, 246, 82-92.	2.5	94
125	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 3. Sols 500–1525. Icarus, 2015, 248, 25-71.	2.5	12

126 10. Spectroscopy from Space. , 2014, , 399-446.

#	Article	IF	CITATIONS
127	Spectroscopy from Space. Reviews in Mineralogy and Geochemistry, 2014, 78, 399-446.	4.8	17
128	Evidence for longitudinal variability of ethane ice on the surface of Pluto. Icarus, 2014, 243, 104-110.	2.5	18
129	The UT 7/8 February 2013 Sila–Nunam mutual event & future predictions. Icarus, 2014, 229, 423-427.	2.5	6
130	Near-infrared spectral monitoring of Pluto's ices II: Recent decline of CO and N2 ice absorptions. Icarus, 2014, 235, 220-224.	2.5	17
131	The rotational light curve of (79360) Sila–Nunam, an eclipsing binary in the Kuiper Belt. Icarus, 2014, 236, 72-82.	2.5	5
132	The orbit of transneptunian binary Manwë and Thorondor and their upcoming mutual events. Icarus, 2014, 237, 1-8.	2.5	8
133	Near-infrared spectral monitoring of Pluto's ices: Spatial distribution and secular evolution. Icarus, 2013, 223, 710-721.	2.5	70
134	Observed Ices in the Solar System. Astrophysics and Space Science Library, 2013, , 3-46.	2.7	17
135	Spectrogoniometry and modeling of martian and lunar analog samples and Apollo soils. Icarus, 2013, 223, 383-406.	2.5	43
136	ASTROMETRY AND ORBITS OF NIX, KERBEROS, AND HYDRA. Astronomical Journal, 2013, 146, 152.	4.7	13
137	Amorphous and Crystalline H2O-Ice. Astrophysics and Space Science Library, 2013, , 371-408.	2.7	27
138	THE ORBIT OF CHARON IS CIRCULAR. Astronomical Journal, 2012, 144, 15.	4.7	32
139	ICE MINERALOGY ACROSS AND INTO THE SURFACES OF PLUTO, TRITON, AND ERIS. Astrophysical Journal, 2012, 751, 76.	4.5	33
140	OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt. Experimental Astronomy, 2012, 34, 203-242.	3.7	37
141	KCTF evolution of trans-neptunian binaries: Connecting formation to observation. Icarus, 2012, 220, 947-957.	2.5	63
142	Physical properties of trans-neptunian binaries (120347) Salacia–Actaea and (42355) Typhon–Echidna. Icarus, 2012, 219, 676-688.	2.5	48
143	Buoyancy of ice in the CH4–N2 system. Icarus, 2012, 219, 733-736.	2.5	25
144	Mutual events in the Cold Classical transneptunian binary system Sila and Nunam. Icarus, 2012, 220, 74-83.	2.5	28

#	Article	IF	CITATIONS
145	POST-CAPTURE EVOLUTION OF POTENTIALLY HABITABLE EXOMOONS. Astrophysical Journal Letters, 2011, 736, L14.	8.3	58
146	Organic materials in planetary and protoplanetary systems: nature or nurture?. Astronomy and Astrophysics, 2011, 533, A98.	5.1	27
147	Long-term evolution of the aerosol debris cloud produced by the 2009 impact on Jupiter. Icarus, 2011, 214, 462-476.	2.5	13
148	Thermal properties of Pluto's and Charon's surfaces from Spitzer observations. Icarus, 2011, 214, 701-716.	2.5	69
149	Remote sensing D/H ratios in methane ice: Temperature-dependent absorption coefficients of CH3D in methane ice and in nitrogen ice. Icarus, 2011, 212, 941-949.	2.5	13
150	Optical and infrared colors of transneptunian objects observed with HST. Icarus, 2011, 213, 693-709.	2.5	32
151	Five new and three improved mutual orbits of transneptunian binaries. Icarus, 2011, 213, 678-692.	2.5	64
152	Inference of Surface Parameters from Near-Infrared Spectra of Crystalline H ₂ O Ice with Neural Learning. Publications of the Astronomical Society of the Pacific, 2010, 122, 839-852.	3.1	8
153	METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS. Astrophysical Journal, 2010, 725, 1296-1305.	4.5	63
154	Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices. Icarus, 2010, 205, 594-604.	2.5	82
155	(47171) 1999 TC36, A transneptunian triple. Icarus, 2010, 207, 978-991.	2.5	41
156	PLUTO AND CHARON WITH THE <i>HUBBLE SPACE TELESCOPE</i> . II. RESOLVING CHANGES ON PLUTO'S SURFACE AND A MAP FOR CHARON. Astronomical Journal, 2010, 139, 1128-1143.	4.7	69
157	PLUTO AND CHARON WITH THE <i>HUBBLE SPACE TELESCOPE. </i> I. MONITORING GLOBAL CHANGE AND IMPROVED SURFACE PROPERTIES FROM LIGHT CURVES. Astronomical Journal, 2010, 139, 1117-1127.	4.7	49
158	Digging into the surface of the icy dwarf planet Eris. Icarus, 2009, 199, 520-525.	2.5	15
159	The correlated colors of transneptunian binaries. Icarus, 2009, 200, 292-303.	2.5	82
160	Is the missing ultra-red material colorless ice?. Icarus, 2009, 199, 560-563.	2.5	38
161	Mutual orbits and masses of six transneptunian binaries. Icarus, 2009, 200, 627-635.	2.5	38
162	High albedos of low inclination Classical Kuiper belt objects. Icarus, 2009, 201, 284-294.	2.5	101

#	Article	IF	CITATIONS
163	An SOM-Hybrid Supervised Model for the Prediction of Underlying Physical Parameters from Near-Infrared Planetary Spectra. Lecture Notes in Computer Science, 2009, , 362-371.	1.3	1
164	New Horizons: Anticipated Scientific Investigations atÂtheÂPluto System. Space Science Reviews, 2008, 140, 93-127.	8.1	74
165	Evidence for two populations of classical transneptunian objects: The strong inclination dependence of classical binaries. Icarus, 2008, 194, 758-768.	2.5	132
166	Evidence of N2-ice on the surface of the icy dwarf Planet 136472 (2005 FY9). Icarus, 2008, 195, 844-850.	2.5	40
167	(42355) Typhon–Echidna: Scheduling observations for binary orbit determination. Icarus, 2008, 197, 260-268.	2.5	45
168	MASSES OF NIX AND HYDRA. Astronomical Journal, 2008, 135, 777-784.	4.7	75
169	Surface characterization of Pluto and Charon by L and M band spectra. Astronomy and Astrophysics, 2008, 490, 365-375.	5.1	37
170	Optical Spectroscopy of the Large Kuiper Belt Objects 136472 (2005 FY9) and 136108 (2003 EL61). Astronomical Journal, 2007, 133, 526-530.	4.7	39
171	Pluto's Spectrum from 1.0 to 4.2 μm: Implications for Surface Properties. Astronomical Journal, 2007, 133, 420-431.	4.7	47
172	New Horizons Mapping of Europa and Ganymede. Science, 2007, 318, 234-237.	12.6	62
173	The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur. Icarus, 2007, 191, 286-297.	2.5	54
174	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	49
175	Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	31
176	The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36. Astrophysical Journal, 2006, 643, 556-566.	4.5	44
177	Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	36
178	Visible spectroscopy of 2003 UB313: evidence for N2 ice on the surface of the largest TNO?. Astronomy and Astrophysics, 2006, 458, L5-L8.	5.1	60
179	Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus, 2006, 184, 543-555.	2.5	113
180	Discovery of a binary Centaur. Icarus, 2006, 184, 611-618.	2.5	28

#	Article	IF	CITATIONS
181	The nature of Europa's dark non-ice surface material: Spatially-resolved high spectral resolution spectroscopy from the Keck telescope. Icarus, 2006, 182, 202-210.	2.5	23
182	Orbits and Photometry of Pluto's Satellites: Charon, S/2005 P1, and S/2005 P2. Astronomical Journal, 2006, 132, 290-298.	4.7	90
183	The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-neptunian belt?. Astronomy and Astrophysics, 2006, 445, L35-L38.	5.1	114
184	Near-Infrared Spectrum of Low-Inclination Classical Kuiper Belt Object (79360) 1997 CS29. Astronomical Journal, 2005, 130, 1299-1301.	4.7	12
185	Diverse albedos of small trans-neptunian objects. Icarus, 2005, 176, 184-191.	2.5	56
186	Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks. Icarus, 2004, 171, 546-556.	2.5	24
187	Near-infrared spectral monitoring of Triton with IRTF/SpeX I: establishing a baseline for rotational variability. Icarus, 2004, 172, 455-465.	2.5	33
188	The orbit, mass, and albedo of transneptunian binary (66652) 1999 RZ253. Icarus, 2004, 172, 402-407.	2.5	31
189	Spectrogonio radiometer for the study of the bidirectional reflectance and polarization functions of planetary surfaces 1 Design and tests. Applied Optics, 2004, 43, 1926.	2.1	53
190	The Orbit and Albedo of Trans-Neptunian Binary (58534) 1997 CQ29. Astronomical Journal, 2004, 128, 2547-2552.	4.7	30
191	Mixing Models, Colors and Thermal Emissions. , 2004, , 331-336.		1
192	HST Photometry of trans-Neptunian Objects. Earth, Moon and Planets, 2003, 92, 251-260.	0.6	12
193	Mixing Models, Colors and Thermal Emissions. Earth, Moon and Planets, 2003, 92, 331-336.	0.6	5
194	Discovery of co2 ice and leading–trailing spectral asymmetry on the uranian satellite ariel. Icarus, 2003, 162, 222-229.	2.5	52
195	Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra. Icarus, 2003, 163, 330-346.	2.5	63
196	The Temperature-Dependent Spectrum of Methane Ice I between 0.7 and 5 μm and Opportunities for Near-Infrared Remote Thermometry. Icarus, 2002, 155, 486-496.	2.5	135
197	Spatial and Compositional Constraints on Non-ice Components and H2O on Pluto's Surface. Icarus, 2002, 157, 128-138.	2.5	37
198	Spectroscopy of Pluto and Triton at 3–4 Microns: Possible Evidence for Wide Distribution of Nonvolatile Solids. Astronomical Journal, 2002, 124, 2273-2278.	4.7	25

#	Article	IF	CITATIONS
199	Detection of Two Binary Trans-Neptunian Objects, 1997 CQ[TINF]29[/TINF] and 2000 CF[TINF]105[/TINF], with the [ITAL]Hubble Space Telescope[/ITAL]. Astronomical Journal, 2002, 124, 3424-3429.	4.7	28
200	Visible/near-infrared spectra and two-layer modeling of palagonite-coated basalts. Geophysical Research Letters, 2001, 28, 2101-2104.	4.0	42
201	Distribution and Evolution of CH4, N2, and CO Ices on Pluto's Surface: 1995 to 1998. Icarus, 2001, 153, 248-263.	2.5	77
202	Experimental system for the study of planetary surface materials' BRDF. International Journal of Remote Sensing, 2000, 19, 59-74.	1.0	5
203	Solar Gardening and the Seasonal Evolution of Nitrogen Ice on Triton and Pluto. Icarus, 2000, 148, 340-346.	2.5	38
204	A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes. Journal of Geophysical Research, 2000, 105, 29291-29314.	3.3	38
205	Near-Infrared Spectra of Icy Outer Solar System Surfaces: Remote Determination of H2O Ice Temperatures. Icarus, 1999, 142, 536-549.	2.5	130
206	The Unusual Spectra of 15 Near-Earth Asteroids and Extinct Comet Candidates. Icarus, 1998, 133, 69-78.	2.5	36
207	The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice. Journal of Geophysical Research, 1998, 103, 25809-25822.	3.3	291
208	Optical Properties of Ices From UV to Infrared. Astrophysics and Space Science Library, 1998, , 199-240.	2.7	91
209	Photometric Observations and Modeling of Asteroid 1620 Geographos. Icarus, 1996, 123, 227-244.	2.5	22
210	Synoptic CCD Spectrophotometry of Pluto Over the Past 15 Years. Icarus, 1996, 124, 329-343.	2.5	49
211	Rotationally Resolved Spectra of 1620 Geographos. Icarus, 1995, 113, 456-459.	2.5	4
212	A Multiwavelength Investigation of the Merging Galaxy HCG 95C. Astronomical Journal, 1995, 109, 2362.	4.7	12
213	The Temperature-Dependent Spectra of α and β Nitrogen Ice with Application to Triton. Icarus, 1993, 105, 254-258.	2.5	63
214	Photometric and spectroscopic observations of 5145 pholus. Journal of Geophysical Research, 1993, 98, 7403-7407.	3.3	14
215	The absorption coefficient of the liquid N2 2.15-μm band and application to triton. Icarus, 1991, 93, 169-173.	2.5	7
216	A new spectrum of Triton near the time of the Voyager encounter. Icarus, 1991, 93, 379-385.	2.5	17

8

#	Article	IF	CITATIONS
217	Relative proper motions and the stellar velocity dispersion of the open cluster M67. Astronomical Journal, 1989, 98, 227.	4.7	130

Physical properties of the Martian surface from spectrophotometric observations. , 0, , 428-450.