Brian C Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/636530/publications.pdf

Version: 2024-02-01

68 papers 3,778 citations

218677
26
h-index

197818 49 g-index

74 all docs

74 docs citations

times ranked

74

5230 citing authors

#	Article	IF	Citations
1	Mechanism of Human SIRT1 Activation by Resveratrol. Journal of Biological Chemistry, 2005, 280, 17187-17195.	3.4	923
2	Sirt3 Promotes the Urea Cycle and Fatty Acid Oxidation during Dietary Restriction. Molecular Cell, 2011, 41, 139-149.	9.7	344
3	Chemical mechanisms of histone lysine and arginine modifications. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 45-57.	1.9	314
4	Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Current Opinion in Chemical Biology, 2012, 16, 498-506.	6.1	228
5	Mechanism-Based Inhibition of Sir2 Deacetylases by Thioacetyl-Lysine Peptide. Biochemistry, 2007, 46, 14478-14486.	2.5	138
6	Coenzyme Specificity of Sir2 Protein Deacetylases. Journal of Biological Chemistry, 2004, 279, 40122-40129.	3.4	136
7	Acetyl-lysine Analog Peptides as Mechanistic Probes of Protein Deacetylases. Journal of Biological Chemistry, 2007, 282, 37256-37265.	3.4	133
8	Mechanisms and Molecular Probes of Sirtuins. Chemistry and Biology, 2008, 15, 1002-1013.	6.0	125
9	A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Analytical Biochemistry, 2009, 394, 101-109.	2.4	125
10	Small molecule regulation of Sir2 protein deacetylases. FEBS Journal, 2005, 272, 4607-4616.	4.7	121
11	Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses. Circulation Research, 2019, 125, 1087-1102.	4.5	114
12	Sir2 Protein Deacetylases:  Evidence for Chemical Intermediates and Functions of a Conserved Histidine. Biochemistry, 2006, 45, 272-282.	2.5	113
13	Molecular architecture of mammalian nitric oxide synthases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3614-23.	7.1	91
14	Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3577-86.	7.1	84
15	Sir2 Deacetylases Exhibit Nucleophilic Participation of Acetyl-Lysine in NAD+Cleavage. Journal of the American Chemical Society, 2007, 129, 5802-5803.	13.7	77
16	SIRT3 Substrate Specificity Determined by Peptide Arrays and Machine Learning. ACS Chemical Biology, 2011, 6, 146-157.	3.4	65
17	Linking SIRT2 to Parkinson's Disease. ACS Chemical Biology, 2007, 2, 529-532.	3.4	56
18	Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases. Nitric Oxide - Biology and Chemistry, 2017, 63, 52-60.	2.7	51

#	Article	IF	CITATIONS
19	Hydrolysis of O-Acetyl-ADP-ribose Isomers by ADP-ribosylhydrolase 3. Journal of Biological Chemistry, 2011, 286, 21110-21117.	3.4	44
20	Chemoproteomic Strategy to Quantitatively Monitor Transnitrosation Uncovers Functionally Relevant S -Nitrosation Sites on Cathepsin D and HADH2. Cell Chemical Biology, 2016, 23, 727-737.	5.2	41
21	Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation. Journal of Biological Chemistry, 2016, 291, 25398-25410.	3.4	38
22	Truncating Mutation in the Nitric Oxide Synthase 1 Gene Is Associated With Infantile Achalasia. Gastroenterology, 2015, 148, 533-536.e4.	1.3	37
23	Nitric oxide antagonism to glioblastoma photodynamic therapy and mitigation thereof by BET bromodomain inhibitor JQ1. Journal of Biological Chemistry, 2018, 293, 5345-5359.	3.4	36
24	Mechanism and Kinetics of Inducible Nitric Oxide Synthase Auto- <i>S</i> -nitrosation and Inactivation. Biochemistry, 2012, 51, 1028-1040.	2.5	34
25	Nitric Oxide Mediates Biofilm Formation and Symbiosis in <i>Silicibacter</i> sp. Strain TrichCH4B. MBio, 2015, 6, e00206-15.	4.1	32
26	Covalent-Fragment Screening of BRD4 Identifies a Ligandable Site Orthogonal to the Acetyl-Lysine Binding Sites. ACS Chemical Biology, 2020, 15, 1036-1049.	3.4	32
27	ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces. BMC Bioinformatics, 2020, 21, 186.	2.6	29
28	Metabolically Derived Lysine Acylations and Neighboring Modifications Tune the Binding of the BET Bromodomains to Histone H4. Biochemistry, 2017, 56, 5485-5495.	2.5	21
29	Cysteine sulfenylation by CD36 signaling promotes arterial thrombosis in dyslipidemia. Blood Advances, 2020, 4, 4494-4507.	5.2	20
30	Structural and Kinetic Isotope Effect Studies of Nicotinamidase (Pnc1) from <i>Saccharomyces cerevisiae</i> . Biochemistry, 2012, 51, 243-256.	2.5	18
31	Ure(k)a! Sirtuins Regulate Mitochondria. Cell, 2009, 137, 404-406.	28.9	17
32	Human sirtuins are differentially sensitive to inhibition by nitrosating agents and other cysteine oxidants. Journal of Biological Chemistry, 2020, 295, 8524-8536.	3.4	17
33	Calmodulin-induced Conformational Control and Allostery Underlying Neuronal Nitric Oxide Synthase Activation. Journal of Molecular Biology, 2018, 430, 935-947.	4.2	14
34	Comparative and integrative metabolomics reveal that S-nitrosation inhibits physiologically relevant metabolic enzymes. Journal of Biological Chemistry, 2018, 293, 6282-6296.	3.4	14
35	Development and Validation of 2D Difference Intensity Analysis for Chemical Library Screening by Proteinâ€Detected NMR Spectroscopy. ChemBioChem, 2018, 19, 448-458.	2.6	13
36	Molecular mechanics and dynamic simulations of well-known Kabuki syndrome-associated KDM6A variants reveal putative mechanisms of dysfunction. Orphanet Journal of Rare Diseases, 2021, 16, 66.	2.7	11

#	Article	IF	Citations
37	Sirtuins Caught in the Act. Structure, 2006, 14, 1207-1208.	3.3	10
38	Validation and Characterization of Five Distinct Novel Inhibitors of Human Cytomegalovirus. Journal of Medicinal Chemistry, 2020, 63, 3896-3907.	6.4	8
39	Characterization of Dual-Acting A ₃ Adenosine Receptor Positive Allosteric Modulators That Preferentially Enhance Adenosine-Induced Gî± _{i3} and Gî± _{oA} Isoprotein Activation. ACS Pharmacology and Translational Science, 2022, 5, 625-641.	4.9	8
40	Development of activity-based probes for the protein deacylase Sirt1. Bioorganic Chemistry, 2020, 104, 104232.	4.1	7
41	Molecular dockingâ€guided synthesis of NSAID–glucosamine bioconjugates and their evaluation as COXâ€1/COXâ€2 inhibitors with potentially reduced gastric toxicity. Chemical Biology and Drug Design, 2021, 98, 102-113.	3.2	7
42	Sirtuin Oxidative Post-translational Modifications. Frontiers in Physiology, 2021, 12, 763417.	2.8	6
43	Non-sedating benzodiazepines cause paralysis and tissue damage in the parasitic blood fluke Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2019, 13, e0007826.	3.0	5
44	Structural bioinformatics enhances the interpretation of somatic mutations in KDM6A found in human cancers. Computational and Structural Biotechnology Journal, 2022, 20, 2200-2211.	4.1	5
45	Trisubstituted 1,3,5-Triazines: The First Ligands of the sY12-Binding Pocket on Chemokine CXCL12. ACS Medicinal Chemistry Letters, 2021, 12, 1773-1782.	2.8	4
46	Oral and Inhaled Fosamprenavir Reverses Pepsinâ€Induced Damage in a Laryngopharyngeal Reflux Mouse Model. Laryngoscope, 2023, 133, .	2.0	4
47	Computational modeling reveals key molecular properties and dynamic behavior of disruptor of telomeric silencing $1\hat{a}\in \mathbb{N}$ in \mathbb{N} and partnering complexes involved in leukemogenesis. Proteins: Structure, Function and Bioinformatics, 2022, 90, 282-298.	2.6	3
48	Chemical Regulation of the Protein Quality Control E3 Ubiquitin Ligase Câ€Terminus of Hsc70 Interacting Protein (CHIP). ChemBioChem, 2022, , .	2.6	1
49	Integrative Modeling, Molecular Mechanics, and Molecular Dynamics Evaluation of Genomics Variants in KMT2C (MLL3), a Gene Involved in Kleefstra Syndrome Type 2. FASEB Journal, 2022, 36, .	0.5	1
50	Reply. Gastroenterology, 2015, 149, 261-262.	1.3	0
51	BET Bromodomain Inhibition Results in the Conserved Upregulation of Sirtuin 1. FASEB Journal, 2021, 35, .	0.5	0
52	Discovering and Exploiting Selectivity in Bromodomain Recognition of Epigenetic Lysine Acylation. FASEB Journal, 2021, 35, .	0.5	0
53	BET bromodomain inhibitors diminish ILâ€1Bâ€induced transcription of NFâ€ÎºB target genes. FASEB Journal, 2021, 35, .	0.5	0
54	Sirtuins regulate metabolic adaptation to energy status. FASEB Journal, 2010, 24, 198.1.	0.5	0

#	Article	IF	CITATIONS
55	SIRT3 Promotes the Urea Cycle by Deacetylating Ornithine Transcarbamoylase. FASEB Journal, 2010, 24, 662.3.	0.5	О
56	Development of a Molecular Probe Targeting Mitochondrial Fission Protein Fis1. FASEB Journal, 2018, 32, 530.17.	0.5	0
57	Discovering and Exploiting Selectivity in BET Tandem Bromodomain Recognition of Epigenetic Lysine Acylation. FASEB Journal, 2018, 32, 524.15.	0.5	O
58	Protein Cysteine Sulfenylation By CD36-Dependent Reactive Oxygen Species Signaling Promotes Platelet Activation. Blood, 2019, 134, 2338-2338.	1.4	0
59	2131-P: BET Bromodomain Inhibition Upregulates SIRT1 In Pancreatic ß-Cells. Diabetes, 2020, 69, 2131-P.	0.6	O
60	2117-P: BET Bromodomain Inhibitors Mitigate Cytokine-Induced Transcription in $ ilde{A}\ddot{Y}$ -Cells via Inhibition of Nf- $\hat{\mathbb{I}}$ B. Diabetes, 2020, 69, 2117-P.	0.6	0
61	Title is missing!. , 2019, 13, e0007826.		0
62	Title is missing!. , 2019, 13, e0007826.		0
63	Title is missing!. , 2019, 13, e0007826.		0
64	Title is missing!. , 2019, 13, e0007826.		0
65	Defining the Mutational Landscape That Affects the Histone Demethylase KDM6A/UTX in Human Cancer. FASEB Journal, 2022, 36, .	0.5	O
66	Zincâ€Chelating BET Bromodomain Inhibitors Selectively Accumulate and Affect Gene Expression in Pancreatic βâ€Cells. FASEB Journal, 2022, 36, .	0.5	0
67	Polybromoâ€1 missense mutations found in renal cancer patients affect bromodomain stability and biological function. FASEB Journal, 2022, 36, .	0.5	0
68	Characterization of Novel A ₃ Adenosine Receptor Allosteric Modulators. FASEB Journal, 2022, 36, .	0.5	0