Robert L Bowman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6364900/publications.pdf

Version: 2024-02-01

38 papers 7,236 citations

28 h-index 35 g-index

43 all docs

43 docs citations

43 times ranked

13477 citing authors

#	Article	IF	Citations
1	CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 2013, 19, 1264-1272.	30.7	1,812
2	GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro-Oncology, 2017, 19, 139-141.	1.2	622
3	Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging. Cell Stem Cell, 2013, 13, 691-705.	11.1	613
4	Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell, 2020, 181, 1643-1660.e17.	28.9	554
5	The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science, 2016, 352, aad3018.	12.6	477
6	Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports, 2016, 17, 2445-2459.	6.4	450
7	Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell, 2018, 22, 157-170.	11.1	345
8	Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature, 2020, 587, 477-482.	27.8	304
9	Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role forÂcathepsin S. Nature Cell Biology, 2014, 16, 876-888.	10.3	300
10	Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins. Cancer Discovery, 2018, 8, 1006-1025.	9.4	248
11	Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Science Translational Medicine, 2020, 12, .	12.4	170
12	Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nature Communications, 2016, 7, 10442.	12.8	144
13	STAT3 and STAT6 Signaling Pathways Synergize to Promote Cathepsin Secretion from Macrophages via IRE1α Activation. Cell Reports, 2016, 16, 2914-2927.	6.4	125
14	Microenvironment-derived factors driving metastatic plasticity in melanoma. Nature Communications, 2017, 8, 14343.	12.8	119
15	Evolution of Cancer Stem-like Cells in Endocrine-Resistant Metastatic Breast Cancers Is Mediated by Stromal Microvesicles. Cancer Research, 2017, 77, 1927-1941.	0.9	112
16	Cohesin Members Stag1 and Stag2 Display Distinct Roles in Chromatin Accessibility and Topological Control of HSC Self-Renewal and Differentiation. Cell Stem Cell, 2019, 25, 682-696.e8.	11.1	106
17	Epigenetic Identity in AML Depends on Disruption of Nonpromoter Regulatory Elements and Is Affected by Antagonistic Effects of Mutations in Epigenetic Modifiers. Cancer Discovery, 2017, 7, 868-883.	9.4	101
18	Microglia promote glioblastoma via mTORâ€mediated immunosuppression of the tumour microenvironment. EMBO Journal, 2020, 39, e103790.	7.8	77

#	Article	IF	CITATIONS
19	TET2 in Normal and Malignant Hematopoiesis. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026518.	6.2	69
20	Jak1 Integrates Cytokine Sensing to Regulate Hematopoietic Stem Cell Function and Stress Hematopoiesis. Cell Stem Cell, 2017, 21, 489-501.e7.	11.1	58
21	PRMT5 Inhibition Modulates E2F1 Methylation and Gene-Regulatory Networks Leading to Therapeutic Efficacy in JAK2V617F-Mutant MPN. Cancer Discovery, 2020, 10, 1742-1757.	9.4	55
22	Underlying Causes and Therapeutic Targeting of the Inflammatory Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2018, 6, 56.	3.7	54
23	Plasmacytoid dendritic cell expansion defines a distinct subset of <i>RUNX1</i> -mutated acute myeloid leukemia. Blood, 2021, 137, 1377-1391.	1.4	51
24	Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes and Development, 2016, 30, 220-232.	5.9	50
25	Deconvoluting hepatic processing of carbon nanotubes. Nature Communications, 2016, 7, 12343.	12.8	42
26	Genetic and epigenetic evolution as a contributor to WT1-mutant leukemogenesis. Blood, 2018, 132, 1265-1278.	1.4	39
27	Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nature Cancer, 2021, 2, 1086-1101.	13.2	39
28	Therapeutic targeting of tumor-associated macrophages and microglia in glioblastoma. Immunotherapy, 2014, 6, 663-666.	2.0	37
29	Evaluating Clonal Hematopoiesis in Tumor-Infiltrating Leukocytes in Breast Cancer and Secondary Hematologic Malignancies. Journal of the National Cancer Institute, 2020, 112, 107-110.	6.3	10
30	eIF2α Kinases Control Chalone Production in Dictyostelium discoideum. Eukaryotic Cell, 2011, 10, 494-501.	3.4	9
31	UVB mutagenesis differs in <i>Nras</i> - and <i>Braf</i> -mutant mouse models of melanoma. Life Science Alliance, 2021, 4, e202101135.	2.8	8
32	An integrated pipeline for comprehensive analysis of immune cells in human brain tumor clinical samples. Nature Protocols, 2021, 16, 4692-4721.	12.0	7
33	A JAK2/IDH1-mutant MPN clone unmasked by ivosidenib in an AML patient without antecedent MPN. Blood Advances, 2020, 4, 6034-6038.	5.2	4
34	Single Cell DNA Sequencing Identifies Combinatorial Mutation Patterns and Clonal Architecture in Myeloid Malignancies. Blood, 2019, 134, 913-913.	1.4	1
35	Stag2 Regulates Hematopoietic Differentiation and Self-Renewal through Alterations in Gene Expression and Topological Control. Blood, 2019, 134, 279-279.	1.4	0
36	Multi-Recombinase Mouse Models of Flt3-Driven Leukemia Identifies Distinct Trajectories of Mutational Cooperativity and Leukemic Transformation. Blood, 2021, 138, 2220-2220.	1.4	0

#	Article	IF	CITATIONS
37	Clonotype-Immunophenotype Relationships in TET2 and IDH-Mutant Myeloid Transformation. Blood, 2021, 138, 373-373.	1.4	0
38	3004 – GENETIC APPROACHES FOR MODELING SUBCLONAL MUTATIONS IN ACUTE MYELOID LEUKEMIA. Experimental Hematology, 2021, 100, S45.	0.4	0