List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/636381/publications.pdf Version: 2024-02-01

	9775	8156
33,947	73	148
citations	h-index	g-index
191	191	45238
docs citations	times ranked	citing authors
	citations 191	33,947 73 citations h-index 191 191

Δετερ Ι Μιιράλν

#	Article	IF	CITATIONS
1	Fatal cytokine release syndrome by an aberrant FLIP/STAT3 axis. Cell Death and Differentiation, 2022, 29, 420-438.	5.0	14
2	Helminth resistance is mediated by differential activation of recruited monocyte-derived alveolar macrophages and arginine depletion. Cell Reports, 2022, 38, 110215.	2.9	30
3	Gene-selective transcription promotes the inhibition of tissue reparative macrophages by TNF. Life Science Alliance, 2022, 5, e202101315.	1.3	10
4	Kynurenine importation by SLC7A11 propagates anti-ferroptotic signaling. Molecular Cell, 2022, 82, 920-932.e7.	4.5	41
5	Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 2078-2090.	1.5	31
6	A common framework of monocyte-derived macrophage activation. Science Immunology, 2022, 7, eabl7482.	5.6	58
7	Monocytes Elicit a Neutrophil-Independent Th1/Th17 Response Upon Immunization With a Mincle-Dependent Glycolipid Adjuvant. Frontiers in Immunology, 2022, 13, 880474.	2.2	3
8	Cold nonâ€ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pigâ€ŧoâ€baboon xenotransplantation. Xenotransplantation, 2021, 28, e12636.	1.6	32
9	Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature, 2021, 592, 444-449.	13.7	233
10	Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. ELife, 2021, 10, .	2.8	58
11	Lactate and IL6 define separable paths of inflammatory metabolic adaptation. Science Advances, 2021, 7,	4.7	55
12	Tryptophan and indole metabolism in immune regulation. Current Opinion in Immunology, 2021, 70, 7-14.	2.4	86
13	Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1–Dependent Myeloid Cells. Cancer Research, 2021, 81, 5047-5059.	0.4	28
14	Metabolic orchestration of the wound healing response. Cell Metabolism, 2021, 33, 1726-1743.	7.2	101
15	Targeting the spliceosome through RBM39 degradation results in exceptional responses in high-risk neuroblastoma models. Science Advances, 2021, 7, eabj5405.	4.7	32
16	On macrophage diversity and inflammatory metabolic timers. Nature Reviews Immunology, 2020, 20, 89-90.	10.6	26
17	Disabled Homolog 2 Controls Prometastatic Activity of Tumor-Associated Macrophages. Cancer Discovery, 2020, 10, 1758-1773.	7.7	44
18	Cancer metastasis linked to macrophage size, shape, and metabolism. Journal of Experimental Medicine, 2020, 217, .	4.2	7

#	Article	IF	CITATIONS
19	Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity. Cell, 2020, 183, 771-785.e12.	13.5	277
20	Differential Roles of IDO1 and IDO2 in T and B Cell Inflammatory Immune Responses. Frontiers in Immunology, 2020, 11, 1861.	2.2	70
21	Cutting Edge: TNF Is Essential for Mycobacteria-Induced MINCLE Expression, Macrophage Activation, and Th17 Adjuvanticity. Journal of Immunology, 2020, 205, 323-328.	0.4	13
22	Environmental arginine controls multinuclear giant cell metabolism and formation. Nature Communications, 2020, 11, 431.	5.8	37
23	Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nature Immunology, 2020, 21, 555-566.	7.0	147
24	Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD. Blood, 2019, 134, 1670-1682.	0.6	49
25	InsP6 binding to PIKK kinases revealed by the cryo-EM structure of an SMG1–SMG8–SMG9 complex. Nature Structural and Molecular Biology, 2019, 26, 1089-1093.	3.6	30
26	Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell–Independent Tumor Proliferation. Cancer Immunology Research, 2018, 6, 566-577.	1.6	22
27	Immune regulation by monocytes. Seminars in Immunology, 2018, 35, 12-18.	2.7	85
28	Nonresolving macrophageâ€mediated inflammation in malignancy. FEBS Journal, 2018, 285, 641-653.	2.2	29
29	Induction of immunosuppressive functions and NF- $\hat{I}^{e}B$ by FLIP in monocytes. Nature Communications, 2018, 9, 5193.	5.8	45
30	M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion. Blood Advances, 2018, 2, 859-870.	2.5	45
31	T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions. Journal of Biological Chemistry, 2017, 292, 15-30.	1.6	52
32	Macrophage Polarization. Annual Review of Physiology, 2017, 79, 541-566.	5.6	1,934
33	Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. , 2017, 5, 101.		307
34	IL-10. , 2016, , 544-553.		0
35	TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection. Cell Reports, 2016, 15, 1062-1075.	2.9	102
36	T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells. Cancer Cell, 2016, 30, 377-390.	7.7	141

#	Article	IF	CITATIONS
37	Exogenous remodeling of lung resident macrophages protects against infectious consequences of bone marrow-suppressive chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6153-E6161.	3.3	16
38	Stress Kinase GCN2 Controls the Proliferative Fitness and Trafficking of Cytotoxic T Cells Independent of Environmental Amino Acid Sensing. Cell Reports, 2016, 17, 2247-2258.	2.9	52
39	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	5.8	2,076
40	Proliferating Helper T Cells Require Rictor/mTORC2 Complex to Integrate Signals from Limiting Environmental Amino Acids. Journal of Biological Chemistry, 2016, 291, 25815-25822.	1.6	26
41	Amino acid auxotrophy as a system of immunological control nodes. Nature Immunology, 2016, 17, 132-139.	7.0	188
42	New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nature Immunology, 2016, 17, 34-40.	7.0	630
43	Issues with the Specificity of Immunological Reagents for Murine IDO1. Cell Metabolism, 2016, 23, 389-390.	7.2	30
44	Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Seminars in Immunopathology, 2016, 38, 139-152.	2.8	69
45	An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathogens, 2016, 12, e1005804.	2.1	37
46	GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood, 2015, 126, 1621-1628.	0.6	104
47	Editorial. Seminars in Immunology, 2015, 27, 235-236.	2.7	10
48	Understanding Local Macrophage Phenotypes In Disease: Modulating macrophage function to treat cancer. Nature Medicine, 2015, 21, 117-119.	15.2	131
49	Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay–Independent Manner. Cancer Research, 2015, 75, 3054-3064.	0.4	35
50	SnapShot: Immunometabolism. Cell Metabolism, 2015, 22, 190-190.e1.	7.2	77
51	Macrophages and cancer: from mechanisms to therapeutic implications. Trends in Immunology, 2015, 36, 229-239.	2.9	572
52	TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Reports, 2015, 12, 1902-1914.	2.9	232
53	Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. Journal of Clinical Investigation, 2015, 125, 4699-4713.	3.9	87
54	Interruption of Macrophage-Derived IL-27(p28) Production by IL-10 during Sepsis Requires STAT3 but Not SOCS3. Journal of Immunology, 2014, 193, 5668-5677.	0.4	42

#	Article	IF	CITATIONS
55	Tyrosine kinase 2 promotes sepsis-associated lethality by facilitating production of interleukin-27. Journal of Leukocyte Biology, 2014, 96, 123-131.	1.5	22
56	Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways. Immunity, 2014, 41, 947-959.	6.6	121
57	Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4024-32.	3.3	103
58	NFIL3-Deficient Mice Develop Microbiota-Dependent, IL-12/23–Driven Spontaneous Colitis. Journal of Immunology, 2014, 192, 1918-1927.	0.4	41
59	Obesity Corrupts Myelopoiesis. Cell Metabolism, 2014, 19, 735-736.	7.2	13
60	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	6.6	4,638
61	Arginase activity in alternatively activated macrophages protects PI3Kp110δ deficient mice from dextran sodium sulfate induced intestinal inflammation. European Journal of Immunology, 2014, 44, 3353-3367.	1.6	50
62	Regulation of Macrophage Polarization by the STAT–SOCS Signaling Axis. , 2014, , 497-508.		2
63	Opposite Effects of M1 and M2 Macrophages on Hematopoietic Stem Cell Self-Renewal and Ex Vivo Expansion. Blood, 2014, 124, 2909-2909.	0.6	0
64	Generation of tissue-specific H-2Kd transgenic mice for the study of Kd-restricted malaria epitope-specific CD8+ T-cell responses in vivo. Journal of Immunological Methods, 2013, 387, 254-261.	0.6	6
65	Local Arginase 1 Activity Is Required for Cutaneous Wound Healing. Journal of Investigative Dermatology, 2013, 133, 2461-2470.	0.3	157
66	Role of Arginase 1 from Myeloid Cells in Th2-Dominated Lung Inflammation. PLoS ONE, 2013, 8, e61961.	1.1	64
67	Non-canonical alternatives: What a macrophage is 4. Journal of Experimental Medicine, 2012, 209, 427-431.	4.2	38
68	Sustained Generation of Nitric Oxide and Control of Mycobacterial Infection Requires Argininosuccinate Synthase 1. Cell Host and Microbe, 2012, 12, 313-323.	5.1	154
69	Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. Journal of Experimental Medicine, 2012, 209, 463-470.	4.2	200
70	Adenosine promotes alternative macrophage activation <i>via</i> A2A and A2B receptors. FASEB Journal, 2012, 26, 376-386.	0.2	306
71	Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways. Nature Immunology, 2012, 13, 916-924.	7.0	148
72	The composition and signaling of the IL-35 receptor are unconventional. Nature Immunology, 2012, 13, 290-299.	7.0	371

#	Article	IF	CITATIONS
73	Control of NOD2 and Rip2-dependent innate immune activation by GEF-H1. Inflammatory Bowel Diseases, 2012, 18, 603-612.	0.9	35
74	Tumor Macrophages. Current Topics in Developmental Biology, 2011, 94, 309-328.	1.0	15
75	Macrophages as a Battleground for Toxoplasma Pathogenesis. Cell Host and Microbe, 2011, 9, 445-447.	5.1	19
76	A Critical Role for SOCS3 in Innate Resistance to Toxoplasma gondii. Cell Host and Microbe, 2011, 10, 224-236.	5.1	69
77	Interpreting mixed signals: the cell's cytokine conundrum. Current Opinion in Immunology, 2011, 23, 632-638.	2.4	51
78	Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology, 2011, 11, 723-737.	10.6	4,050
79	Gut Nod2 Calls the Bone Marrow for Monocyte Reinforcements. Immunity, 2011, 34, 693-695.	6.6	0
80	Obstacles and opportunities for understanding macrophage polarization. Journal of Leukocyte Biology, 2011, 89, 557-563.	1.5	429
81	A Distal Enhancer in Il12b Is the Target of Transcriptional Repression by the STAT3 Pathway and Requires the Basic Leucine Zipper (B-ZIP) Protein NFIL3. Journal of Biological Chemistry, 2011, 286, 23582-23590.	1.6	70
82	A double agent in cancer: Stopping macrophages wounds tumors. Nature Medicine, 2010, 16, 863-864.	15.2	12
83	IL-10 Inhibits miR-155 Induction by Toll-like Receptors. Journal of Biological Chemistry, 2010, 285, 20492-20498.	1.6	247
84	STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood, 2010, 116, 2462-2471.	0.6	183
85	Arginine Usage in Mycobacteria-Infected Macrophages Depends on Autocrine-Paracrine Cytokine Signaling. Science Signaling, 2010, 3, ra62.	1.6	128
86	Tristetraprolin Is Required for Full Anti-Inflammatory Response of Murine Macrophages to IL-10. Journal of Immunology, 2009, 183, 1197-1206.	0.4	96
87	Arginase-1–Expressing Macrophages Suppress Th2 Cytokine–Driven Inflammation and Fibrosis. PLoS Pathogens, 2009, 5, e1000371.	2.1	673
88	Autocrine IL-10 Induces Hallmarks of Alternative Activation in Macrophages and Suppresses Antituberculosis Effector Mechanisms without Compromising T Cell Immunity. Journal of Immunology, 2009, 183, 1301-1312.	0.4	130
89	LAG-3 Regulates Plasmacytoid Dendritic Cell Homeostasis. Journal of Immunology, 2009, 182, 1885-1891.	0.4	311
90	Beyond peptidoglycan for Nod2. Nature Immunology, 2009, 10, 1053-1054.	7.0	16

#	Article	IF	CITATIONS
91	E2-RING Expansion of the NEDD8 Cascade Confers Specificity to Cullin Modification. Molecular Cell, 2009, 33, 483-495.	4.5	228
92	Endogenous suppression of mast cell development and survival by IL-4 and IL-10. Journal of Leukocyte Biology, 2009, 85, 826-836.	1.5	41
93	Caspase-7 deficiency protects from endotoxin-induced lymphocyte apoptosis and improves survival. Blood, 2009, 113, 2742-2745.	0.6	60
94	STAT3 Controls Neutrophil Progenitor Growth and Differentiation During Emergency Granulopoiesis Blood, 2009, 114, 3619-3619.	0.6	1
95	Toll-like receptor–induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nature Immunology, 2008, 9, 1399-1406.	7.0	558
96	The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell walls. Cellular Microbiology, 2008, 10, 2067-2077.	1.1	82
97	Cytokine Signaling Modules in Inflammatory Responses. Immunity, 2008, 28, 477-487.	6.6	641
98	Modulation of adaptive immunity by different adjuvant–antigen combinations in mice lacking Nod2. Vaccine, 2008, 26, 5808-5813.	1.7	38
99	IL-10 Suppresses Mast Cell IgE Receptor Expression and Signaling In Vitro and In Vivo. Journal of Immunology, 2008, 180, 2848-2854.	0.4	89
100	Abrogation of Anti-Retinal Autoimmunity in IL-10 Transgenic Mice Due to Reduced T Cell Priming and Inhibition of Disease Effector Mechanisms. Journal of Immunology, 2008, 180, 5423-5429.	0.4	23
101	Persistent Coxiella burnetii Infection in Mice Overexpressing IL-10: An Efficient Model for Chronic Q Fever Pathogenesis. PLoS Pathogens, 2008, 4, e23.	2.1	79
102	The platelet activating factor receptor is not required for exacerbation of bacterial pneumonia following influenza. Scandinavian Journal of Infectious Diseases, 2008, 40, 11-17.	1.5	32
103	Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. Journal of Clinical Investigation, 2008, 118, 545-59.	3.9	276
104	Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival. World Journal of Gastroenterology, 2008, 14, 5834.	1.4	20
105	Macrophage/neutrophil specific Arginaseâ€1 is a critical survival factor and regulator of liver fibrosis during Schistosoma mansoni infection. FASEB Journal, 2008, 22, 674.8.	0.2	0
106	Cutting Edge: A Transcriptional Repressor and Corepressor Induced by the STAT3-Regulated Anti-Inflammatory Signaling Pathway. Journal of Immunology, 2007, 179, 7215-7219.	0.4	149
107	Nucleotide-Binding Oligomerization Domain Protein 2-Deficient Mice Control Infection with <i>Mycobacterium tuberculosis</i> . Infection and Immunity, 2007, 75, 5127-5134.	1.0	94
108	The JAK-STAT Signaling Pathway: Input and Output Integration. Journal of Immunology, 2007, 178, 2623-2629.	0.4	1,013

#	Article	IF	CITATIONS
109	Oxidative metabolism and PGC-1Î ² attenuate macrophage-mediated inflammation. Cell Metabolism, 2006, 4, 13-24.	7.2	1,103
110	Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Current Opinion in Pharmacology, 2006, 6, 379-386.	1.7	386
111	Nucleotide Binding Oligomerization Domain 2 Deficiency Leads to Dysregulated TLR2 Signaling and Induction of Antigen-Specific Colitis. Immunity, 2006, 25, 473-485.	6.6	213
112	STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood, 2006, 108, 3682-3690.	0.6	161
113	Signalling pathways and molecular interactions of NOD1 and NOD2. Nature Reviews Immunology, 2006, 6, 9-20.	10.6	730
114	IL-6 signaling via the STAT3/SOCS3 pathway: Functional Analysis of the Conserved STAT3 N-domain. Molecular and Cellular Biochemistry, 2006, 288, 179-189.	1.4	76
115	Targeting Vector Construction by Yeast Artificial Chromosome Modification. , 2006, 349, 127-138.		1
116	Cell Wall-Mediated Neuronal Damage in Early Sepsis. Infection and Immunity, 2006, 74, 3783-3789.	1.0	45
117	General Nature of the STAT3-Activated Anti-Inflammatory Response. Journal of Immunology, 2006, 177, 7880-7888.	0.4	197
118	Induction of Suppressor of Cytokine Signaling-1 by <i>Toxoplasma gondii</i> Contributes to Immune Evasion in Macrophages by Blocking IFN-γ Signaling. Journal of Immunology, 2006, 176, 1840-1847.	0.4	98
119	Conditional Knockout Mice Reveal Distinct Functions for the Global Transcriptional Coactivators CBP and p300 in T-Cell Development. Molecular and Cellular Biology, 2006, 26, 789-809.	1.1	183
120	Interleukin-10 induces apoptosis in developing mast cells and macrophages. Journal of Leukocyte Biology, 2006, 80, 581-589.	1.5	42
121	IFN-Î ³ Enhances Production of Nitric Oxide from Macrophages via a Mechanism That Depends on Nucleotide Oligomerization Domain-2. Journal of Immunology, 2006, 176, 4804-4810.	0.4	72
122	Platelet-Activating Factor Receptor and Innate Immunity: Uptake of Gram-Positive Bacterial Cell Wall into Host Cells and Cell-Specific Pathophysiology. Journal of Immunology, 2006, 177, 6182-6191.	0.4	85
123	NOD proteins: an intracellular pathogen-recognition system or signal transduction modifiers?. Current Opinion in Immunology, 2005, 17, 352-358.	2.4	68
124	WASPâ^' mice exhibit defective immune responses to influenza A virus, Streptococcus pneumoniae, and Mycobacterium bovis BCG. Experimental Hematology, 2005, 33, 443-451.	0.2	36
125	Control of dual-specificity phosphatase-1 expression in activated macrophages by IL-10. European Journal of Immunology, 2005, 35, 2991-3001.	1.6	114
126	Cutting Edge: IL-10-Independent STAT3 Activation by <i>Toxoplasma gondii</i> Mediates Suppression of IL-12 and TNF-α in Host Macrophages. Journal of Immunology, 2005, 174, 3148-3152.	0.4	137

#	Article	IF	CITATIONS
127	β-Arrestin 1 Participates in Platelet-Activating Factor Receptor-Mediated Endocytosis of Streptococcus pneumoniae. Infection and Immunity, 2005, 73, 7827-7835.	1.0	129
128	The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8686-8691.	3.3	337
129	HypervirulentM. tuberculosisW/Beijing Strains Upregulate Type I IFNs and Increase Expression of Negative Regulators of the Jak-Stat Pathway. Journal of Interferon and Cytokine Research, 2005, 25, 694-701.	0.5	267
130	Enhancer-Mediated Control of Macrophage-Specific Arginase I Expression. Journal of Immunology, 2004, 172, 7565-7573.	0.4	210
131	IFN Regulatory Factor 3-Dependent Induction of Type I IFNs by Intracellular Bacteria Is Mediated by a TLR- and Nod2-Independent Mechanism. Journal of Immunology, 2004, 173, 7416-7425.	0.4	195
132	Re-examination of the Role of Suppressor of Cytokine Signaling 1 (SOCS1) in the Regulation of Toll-like Receptor Signaling. Journal of Biological Chemistry, 2004, 279, 54702-54707.	1.6	127
133	NOD2 is a negative regulator of Toll-like receptor 2–mediated T helper type 1 responses. Nature Immunology, 2004, 5, 800-808.	7.0	767
134	SOCS3 regulates the plasticity of gp130 signaling. Nature Immunology, 2003, 4, 546-550.	7.0	394
135	Role of Nod2 in the Response of Macrophages to Toll-Like Receptor Agonists. Molecular and Cellular Biology, 2003, 23, 7531-7539.	1.1	248
136	Autocrine Deactivation of Macrophages in Transgenic Mice Constitutively Overexpressing IL-10 Under Control of the Human CD68 Promoter. Journal of Immunology, 2002, 168, 3402-3411.	0.4	149
137	Shaping Gene Expression in Activated and Resting Primary Macrophages by IL-10. Journal of Immunology, 2002, 169, 2253-2263.	0.4	521
138	Yeast Artificial Chromosome Targeting Technology: An Approach for the Deletion of Genes in the C57BL/6 Mouse. Analytical Biochemistry, 2001, 296, 270-278.	1.1	6
139	Apoptosisâ€Inducing Factor Mediates Microglial and Neuronal Apoptosis Caused by Pneumococcus. Journal of Infectious Diseases, 2001, 184, 1300-1309.	1.9	128
140	TNF-α Controls Intracellular Mycobacterial Growth by Both Inducible Nitric Oxide Synthase-Dependent and Inducible Nitric Oxide Synthase-Independent Pathways. Journal of Immunology, 2001, 166, 6728-6734.	0.4	141
141	Cutting Edge: Stat6-Dependent Substrate Depletion Regulates Nitric Oxide Production. Journal of Immunology, 2001, 166, 2173-2177.	0.4	268
142	Aerosol infection of mice with recombinant BCG secreting murine IFN-γ partially reconstitutes local protective immunity. Microbial Pathogenesis, 2000, 29, 175-185.	1.3	40
143	Phospholipase CÎ ³ 2 Is Essential in the Functions of B Cell and Several Fc Receptors. Immunity, 2000, 13, 25-35.	6.6	444
144	Defining the requirements for immunological control of mycobacterial infections. Trends in Microbiology, 1999, 7, 366-372.	3.5	55

#	Article	IF	CITATIONS
145	Response from Murray. Trends in Microbiology, 1999, 7, 478-479.	3.5	5
146	Increased Antimycobacterial Immunity in Interleukin-10-Deficient Mice. Infection and Immunity, 1999, 67, 3087-3095.	1.0	158
147	Pneumolysin, a Protein Toxin of <i>Streptococcus pneumoniae</i> , Induces Nitric Oxide Production from Macrophages. Infection and Immunity, 1999, 67, 3750-3756.	1.0	112
148	Secretion of Mammalian Proteins from Mycobacteria. , 1998, 101, 275-284.		2
149	Hematopoietic Remodeling in Interferon-γ–Deficient Mice Infected With Mycobacteria. Blood, 1998, 91, 2914-2924.	0.6	71
150	A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature, 1996, 380, 82-85.	13.7	137
151	Characterization of a polymorphic family of integral membrane proteins in promastigotes of different Leishmania species. Molecular and Biochemical Parasitology, 1994, 67, 103-113.	0.5	34
152	Identification, characterisation and genomic cloning of a O-linked N-acetylglucosamine-containing cytoplasmic Leishmania glycoprotein. Molecular and Biochemical Parasitology, 1993, 62, 61-72.	0.5	17
153	Structure-function studies of human interferons-α: Enhanced activity on human and murine cells. Antiviral Research, 1991, 15, 27-39.	1.9	27
154	Leishmania major: Expression and gene structure of the glycoprotein 63 molecule in virulent and avirulent clones and strains. Experimental Parasitology, 1990, 71, 294-304.	0.5	37
155	Rapid nucleotide sequence analysis of the small subunit ribosomal RNA of Toxoplasma gondii: evolutionary implications for the Apicomplexa. Molecular and Biochemical Parasitology, 1987, 25, 239-246.	0.5	35
156	Ursula Grohmann, PhD: In Memoriam (1961–2022). Cancer Immunology Research, 0, , OF1-OF1.	1.6	0