Yongxiong Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6363448/publications.pdf Version: 2024-02-01

YONCKIONC REN

#	Article	lF	CITATIONS
1	Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6, 488-496.	31.4	3,471
2	Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science, 2013, 340, 1545-1548.	12.6	2,330
3	High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications, 2014, 5, 4876.	12.8	972
4	Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Scientific Reports, 2015, 5, 14931.	3.3	216
5	Mode Properties and Propagation Effects of Optical Orbital Angular Momentum (OAM) Modes in a Ring Fiber. IEEE Photonics Journal, 2012, 4, 535-543.	2.0	180
6	Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications. Scientific Reports, 2016, 6, 33306.	3.3	156
7	Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150439.	3.4	131
8	Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing. IEEE Transactions on Wireless Communications, 2017, 16, 3151-3161.	9.2	130
9	Octave-spanning supercontinuum generation of vortices in an As_2S_3 ring photonic crystal fiber. Optics Letters, 2012, 37, 1889.	3.3	111
10	High-Capacity Free-Space Optical Communications Between a Ground Transmitter and a Ground Receiver via a UAV Using Multiplexing of Multiple Orbital-Angular-Momentum Beams. Scientific Reports, 2017, 7, 17427.	3.3	81
11	Using a complex optical orbital-angular-momentum spectrum to measure object parameters. Optics Letters, 2017, 42, 4482.	3.3	81
12	Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. Optics Letters, 2015, 40, 4210.	3.3	69
13	Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links. Scientific Reports, 2016, 6, 22082.	3.3	63
14	Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams. APL Photonics, 2021, 6, .	5.7	53
15	Multipath Effects in Millimetre-Wave Wireless Communication using Orbital Angular Momentum Multiplexing. Scientific Reports, 2016, 6, 33482.	3.3	37
16	32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing. , 2016, , .		29
17	Air-Core Ring Fiber With >1000 Radially Fundamental OAM Modes Across O, E, S, C, and L Bands. IEEE Access, 2020, 8, 68280-68287.	4.2	23
18	Single-End Adaptive Optics Compensation for Emulated Turbulence in a Bi-Directional 10-Mbit/s per Channel Free-Space Quantum Communication Link Using Orbital-Angular-Momentum Encoding. Research, 2019, 2019, 8326701.	5.7	21

YONGXIONG REN

#	Article	IF	CITATIONS
19	Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array. Scientific Reports, 2016, 6, 37078.	3.3	20
20	Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing. , 2015, , .		18
21	1.6-Octave Coherent OAM Supercontinuum Generation in As ₂ S ₃ Photonic Crystal Fiber. IEEE Access, 2020, 8, 168177-168185.	4.2	18
22	Experimental demonstration of 16 Gbit/s millimeter-wave communications using MIMO processing of 2 OAM modes on each of two transmitter/receiver antenna apertures. , 2014, , .		17
23	Experimental demonstration of 16-Gbit/s millimeter-wave communications link using thin metamaterial plates to generate data-carrying orbital-angular-momentum beams. , 2015, , .		17
24	OFDM over mm-Wave OAM Channels in a Multipath Environment with Intersymbol Interference. , 2016, , \cdot		17
25	Invited Article: Division and multiplication of the state order for data-carrying orbital angular momentum beams. APL Photonics, 2016, 1, .	5.7	16
26	Eye Diagram Measurement-Based Joint Modulation Format, OSNR, ROF, and Skew Monitoring of Coherent Channel Using Deep Learning. Journal of Lightwave Technology, 2019, 37, 5907-5913.	4.6	16
27	Beyond Two-Octave Coherent OAM Supercontinuum Generation in Air-Core As ₂ S ₃ Ring Fiber. IEEE Access, 2020, 8, 96543-96549.	4.2	16
28	Two-Octave Supercontinuum Generation of High-Order OAM Modes in Air-Core Asâ,,Sâ,ƒ Ring Fiber. IEEE Access, 2020, 8, 114135-114142.	4.2	15
29	Three-Octave Supercontinuum Generation Using SiO ₂ Cladded Si ₃ N ₄ Slot Waveguide With All-Normal Dispersion. Journal of Lightwave Technology, 2020, 38, 3431-3438.	4.6	14
30	Highly dispersive coupled ring-core fiber for orbital angular momentum modes. Applied Physics Letters, 2020, 117, .	3.3	13
31	Demonstration of 8-mode 32-Gbit/s millimeter-wave free-space communication link using 4 orbital-angular-momentum modes on 2 polarizations. , 2014, , .		11
32	Hollow Ring-Core Photonic Crystal Fiber With >500 OAM Modes Over 360-nm Communications Bandwidth. IEEE Access, 2021, 9, 66999-67005.	4.2	9
33	Non-zero dispersion-shifted ring fiber for the orbital angular momentum mode. Optics Express, 2021, 29, 25428.	3.4	8
34	Multi-Ring-Air-Core Fiber Supporting Numerous Radially Fundamental OAM Modes. Journal of Lightwave Technology, 2022, 40, 4420-4428.	4.6	8
35	Performance metrics and design parameters for an FSO communications link based on multiplexing of multiple orbital-angular-momentum beams. , 2014, , .		6
36	Polarization Beam Splitter Based on Si3N4/SiO2 Horizontal Slot Waveguides for On-Chip High-Power Applications. Sensors, 2020, 20, 2862.	3.8	6

YONGXIONG REN

#	Article	IF	CITATIONS
37	Highly Dispersive Germanium-Doped Coupled Ring-Core Fiber for Vortex Modes. Journal of Lightwave Technology, 2022, 40, 2144-2150.	4.6	6
38	Special Issue on Novel Insights into Orbital Angular Momentum Beams: From Fundamentals, Devices to Applications. Applied Sciences (Switzerland), 2019, 9, 2600.	2.5	3
39	Air-Core Ring Fiber Guiding >400 Radially Fundamental OAM Modes Across S + C + L Bands. IEEE Access, 2021, 9, 75617-75625.	4.2	3
40	Dividing and multiplying the mode order for orbital-angular-momentum beams. , 2015, , .		2
41	Air-Core Non-Zero Dispersion-Shifted Fiber With High-Index Ring for OAM Mode. IEEE Access, 2021, 9, 107804-107811.	4.2	2
42	Analysis of aperture size for partially receiving and de-multiplexing 100-Gbit/s optical orbital angular momentum channels over free-space link. , 2013, , .		1
43	Single-End Adaptive Optics Compensation for Emulated Turbulence in a Bi-Directional 10-Mbit/s per Channel Free-Space Quantum Communication Link Using Orbital-Angular-Momentum Encoding. Research, 2019, 2019, 1-10.	5.7	1
44	Hollow Ring-Core Hybrid Photonic Crystal Fiber Supporting >500 OAM Modes Across O, E, S, C, L Bands. , 2020, , .		1
45	1.3-Octave Coherent Supercontinuum Generation of OAM Mode in Ring-Core Fiber With All-Normal Dispersion. IEEE Access, 2022, 10, 76990-76997.	4.2	1
46	Exploiting the unique intensity gradient of an orbital-angular-momentum beam for accurate receiver alignment monitoring in a free-space communication link. , 2015, , .		0
47	Switchable detector array scheme to reduce the effect of single-photon detector's deadtime in a multi-bit/photon quantum link. Optics Communications, 2019, 441, 132-137.	2.1	0
48	Object Wedge Angle and Direction Identification Using Machine Learning Algorithms. , 2019, , .		0
49	Octave-Spanning Dispersive Slot Waveguide Based Chip-Level Ultrashort Pulse Stretcher. IEEE Access, 2020, 8, 172086-172095.	4.2	0
50	Beyond Two-Octave OAM Supercontinuum Generation in Gemanium-Doped Ring-Core Fiber. , 2021, , .		0