Kayla G Barnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6363236/publications.pdf Version: 2024-02-01

KAVIA C. RADNES

#	Article	IF	CITATIONS
1	Leveraging Beneficial Off-Target Effects of Live-Attenuated Rotavirus Vaccines. Vaccines, 2022, 10, 418.	4.4	4
2	Distinct clinical and immunological profiles of patients with evidence of SARS-CoV-2 infection in sub-Saharan Africa. Nature Communications, 2021, 12, 3554.	12.8	21
3	Implementation of the Ebola Virus Persistence in Ocular Tissues and Fluids (EVICT) study: Lessons learned for vision health systems strengthening in Sierra Leone. PLoS ONE, 2021, 16, e0252905.	2.5	5
4	Rotavirus Genotypes in Hospitalized Children With Acute Gastroenteritis Before and After Rotavirus Vaccine Introduction in Blantyre, Malawi, 1997–2019. Journal of Infectious Diseases, 2020, , .	4.0	13
5	Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nature Communications, 2020, 11, 4131.	12.8	101
6	Single-Cell Profiling of Ebola Virus Disease InÂVivo Reveals Viral and Host Dynamics. Cell, 2020, 183, 1383-1401.e19.	28.9	79
7	Field evaluation of a Pan-Lassa rapid diagnostic test during the 2018 Nigerian Lassa fever outbreak. Scientific Reports, 2020, 10, 8724.	3.3	14
8	Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nature Biotechnology, 2019, 37, 160-168.	17.5	96
9	Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Scientific Reports, 2018, 8, 5939.	3.3	39
10	Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360, 444-448.	12.6	982
11	Genomic Analysis of Lassa Virus during an Increase in Cases in Nigeria in 2018. New England Journal of Medicine, 2018, 379, 1745-1753.	27.0	135
12	Ebola Virus Persistence in Ocular Tissues and Fluids (EVICT) Study: Reverse Transcription-Polymerase Chain Reaction and Cataract Surgery Outcomes of Ebola Survivors in Sierra Leone. EBioMedicine, 2018, 30, 217-224.	6.1	42
13	Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 2017, 546, 401-405.	27.8	298
14	Zika virus evolution and spread in the Americas. Nature, 2017, 546, 411-415.	27.8	323
15	Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector <i>Anopheles funestus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 286-291.	7.1	37
16	Evidence of Ebola Virus Replication and High Concentration in Semen of a Patient During Recovery. Clinical Infectious Diseases, 2017, 65, 1400-1403.	5.8	26
17	Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control. PLoS Genetics, 2017, 13, e1006539.	3.5	57
18	Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control. Malaria Journal, 2015, 14, 344.	2.3	98

Kayla G Barnes

#	Article	IF	CITATIONS
19	Widespread Pyrethroid and DDT Resistance in the Major Malaria Vector Anopheles funestus in East Africa Is Driven by Metabolic Resistance Mechanisms. PLoS ONE, 2014, 9, e110058.	2.5	99
20	The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa. BMC Genomics, 2014, 15, 817.	2.8	100
21	Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector <i>Anopheles funestus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 252-257.	7.1	190
22	SNP Genotyping Identifies New Signatures of Selection in a Deep Sample of West African Plasmodium falciparum Malaria Parasites. Molecular Biology and Evolution, 2012, 29, 3249-3253.	8.9	41
23	Impact of pyrethroid resistance on operational malaria control in Malawi. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19063-19070.	7.1	104
24	Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum. PLoS Genetics, 2011, 7, e1001383.	3.5	85