Serge Cosnier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6362740/publications.pdf Version: 2024-02-01

	9264	19190
20,902	74	118
citations	h-index	g-index
423	423	15493
docs citations	times ranked	citing authors
	citations 423	20,90274citationsh-index423423

#	Article	IF	CITATIONS
1	Nanomaterials for biosensing applications: a review. Frontiers in Chemistry, 2014, 2, 63.	3.6	794
2	Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, 1999, 14, 443-456.	10.1	727
3	Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nature Communications, 2011, 2, 370.	12.8	522
4	A Glucose BioFuel Cell Implanted in Rats. PLoS ONE, 2010, 5, e10476.	2.5	346
5	Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chemical Reviews, 2019, 119, 9509-9558.	47.7	321
6	Subnanomolar Cyanide Detection at Polyphenol Oxidase/Clay Biosensors. Analytical Chemistry, 2004, 76, 178-183.	6.5	316
7	Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices. Scientific Reports, 2013, 3, 1516.	3.3	301
8	Photoelectrochemical Immunosensor for Label-Free Detection and Quantification of Anti-cholera Toxin Antibody. Journal of the American Chemical Society, 2006, 128, 9693-9698.	13.7	274
9	Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochemistry Communications, 2014, 38, 19-23.	4.7	262
10	Biosensors based on electropolymerized films: new trends. Analytical and Bioanalytical Chemistry, 2003, 377, 507-520.	3.7	251
11	Carbon nanotube/enzyme biofuel cells. Electrochimica Acta, 2012, 82, 179-190.	5.2	212
12	Layered Double Hydroxides:Â An Attractive Material for Electrochemical Biosensor Design. Analytical Chemistry, 2003, 75, 3872-3879.	6.5	198
13	Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations. Journal of Power Sources, 2016, 325, 252-263.	7.8	195
14	Noncovalently Functionalized Monolayer Graphene for Sensitivity Enhancement of Surface Plasmon Resonance Immunosensors. Journal of the American Chemical Society, 2015, 137, 2800-2803.	13.7	190
15	Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid. Carbon, 2016, 96, 1034-1042.	10.3	180
16	High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Physical Chemistry Chemical Physics, 2013, 15, 4892.	2.8	154
17	A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide. Journal of Electroanalytical Chemistry, 1999, 469, 176-181.	3.8	147
18	Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles. Biosensors and Bioelectronics, 2007, 22, 1612-1617.	10.1	147

#	Article	IF	CITATIONS
19	A novel biosensor elaboration by electropolymerization of an adsorbed amphiphilic pyrrole-tyrosinase enzyme layer. Journal of Electroanalytical Chemistry, 1992, 328, 361-366.	3.8	146
20	Electrosynthesized polymers for biosensing. Chemical Society Reviews, 2011, 40, 2146.	38.1	146
21	Zirconium-Based Porphyrinic Metal–Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. Analytical Chemistry, 2016, 88, 11207-11212.	6.5	146
22	Affinity Biosensors Based on Electropolymerized Films. Electroanalysis, 2005, 17, 1701-1715.	2.9	145
23	Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cellular and Molecular Life Sciences, 2015, 72, 941-952.	5.4	143
24	Urea Biosensors Based on Immobilization of Urease into Two Oppositely Charged Clays (Laponite and) Tj ETQqO	0	Overlock 10 132
25	Stretchable and Flexible Buckypaperâ€Based Lactate Biofuel Cell for Wearable Electronics. Advanced Functional Materials, 2019, 29, 1905785.	14.9	132
26	A new strategy for the construction of a tyrosinase-based amperometric phenol and o-diphenol sensor. Bioelectrochemistry, 1993, 31, 147-160.	1.0	129
27	Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst, The, 2011, 136, 1279.	3.5	126
28	Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles. Electrochemistry Communications, 2007, 9, 529-534.	4.7	121
29	Recent advances in DNA sensors. Analyst, The, 2008, 133, 984.	3.5	121
30	A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides. Analytica Chimica Acta, 1995, 311, 255-263.	5.4	119
31	Electrocatalytic Oxidation of Glucose by Rhodium Porphyrin-Functionalized MWCNT Electrodes: Application to a Fully Molecular Catalyst-Based Glucose/O ₂ Fuel Cell. Journal of the American Chemical Society, 2012, 134, 14078-14085.	13.7	119
32	Buckypaper bioelectrodes: emerging materials for implantable and wearable biofuel cells. Energy and Environmental Science, 2018, 11, 1670-1687.	30.8	119
33	Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy and Environmental Science, 2014, 7, 1884-1888.	30.8	117
34	A Biotinylated Conducting Polypyrrole for the Spatially Controlled Construction of an Amperometric Biosensor. Analytical Chemistry, 1999, 71, 3692-3697.	6.5	116
35	Amperometric phenol biosensor based on laponite clay–chitosan nanocomposite matrix. Biosensors and Bioelectronics, 2007, 22, 816-821.	10.1	115
36	Electrochemical coating of a platinum electrode by a poly(pyrrole) film containing the fac-Re(2,2′-bipyridine)(CO)3Cl system application to electrocatalytic reduction of CO2. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 207, 315-321.	0.1	112

#	Article	IF	CITATIONS
37	Electrogeneration of a Poly(pyrrole)-NTA Chelator Film for a Reversible Oriented Immobilization of Histidine-Tagged Proteins. Journal of the American Chemical Society, 2005, 127, 5752-5753.	13.7	112
38	Amperometric Detection of Nitrate via a Nitrate Reductase Immobilized and Electrically Wired at the Electrode Surface. Analytical Chemistry, 1994, 66, 3198-3201.	6.5	110
39	Oxidative electropolymerization of polypyridinyl complexes of ruthenium(II)-containing pyrrole groups. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 193, 193-204.	0.1	104
40	Impedimetric immunosensor using avidin–biotin for antibody immobilization. Bioelectrochemistry, 2002, 56, 131-133.	4.6	100
41	One-pot synthesis of nitrogen-rich carbon dots decorated graphene oxide as metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2016, 109, 402-410.	10.3	96
42	Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. Analytical Methods, 2012, 4, 2048.	2.7	95
43	Synthesis and Characterization of a Pyrroleâ^Alginate Conjugate and Its Application in a Biosensor Construction. Biomacromolecules, 2005, 6, 3313-3318.	5.4	94
44	Hybrid Material Based on Chitosan and Layered Double Hydroxides:Â Characterization and Application to the Design of Amperometric Phenol Biosensor. Biomacromolecules, 2007, 8, 971-975.	5.4	94
45	An Electrochemical Method for Making Enzyme Microsensors. Application to the Detection of Dopamine and Glutamate. Analytical Chemistry, 1997, 69, 968-971.	6.5	92
46	Optical Fiber Immunosensor Based on a Poly(pyrroleâ^'benzophenone) Film for the Detection of Antibodies to Viral Antigen. Analytical Chemistry, 2005, 77, 1771-1779.	6.5	92
47	Protease Amperometric Sensor. Analytical Chemistry, 2006, 78, 6327-6331.	6.5	92
48	Ferrocyanide-Ferricyanide Redox Couple Induced Electrochemiluminescence Amplification of Carbon Dots for Ultrasensitive Sensing of Glutathione. Analytical Chemistry, 2015, 87, 11150-11156.	6.5	91
49	Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors. Journal of Materials Chemistry, 2004, 14, 807-810.	6.7	89
50	Direct Electron Transfer between a Site-Specific Pyrene-Modified Laccase and Carbon Nanotube/Gold Nanoparticle Supramolecular Assemblies for Bioelectrocatalytic Dioxygen Reduction. ACS Catalysis, 2016, 6, 1894-1900.	11.2	89
51	Recent Advances in Biological Sensors Based on Electrogenerated Polymers: A Review. Analytical Letters, 2007, 40, 1260-1279.	1.8	88
52	Adamantane/l̂2-cyclodextrin affinity biosensors based on single-walled carbon nanotubes. Biosensors and Bioelectronics, 2009, 24, 1128-1134.	10.1	88
53	Label-Free Femtomolar Detection of Target DNA by Impedimetric DNA Sensor Based on Poly(pyrrole-nitrilotriacetic acid) Film. Analytical Chemistry, 2010, 82, 1066-1072.	6.5	87
54	Fully Oriented Bilirubin Oxidase on Porphyrinâ€Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 16868-16873.	3.3	87

#	Article	IF	CITATIONS
55	Carbonâ€Nanotubeâ€&upported Bioâ€Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. Angewandte Chemie - International Edition, 2017, 56, 1845-1849.	13.8	87
56	Electropolymerization of amphiphilic monomers for designing amperometric biosensors. Electroanalysis, 1997, 9, 894-902.	2.9	86
57	A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip. Talanta, 1999, 50, 219-226.	5.5	86
58	Laccase immobilization in redox active layered double hydroxides: A reagentless amperometric biosensor. Biosensors and Bioelectronics, 2007, 22, 1733-1738.	10.1	86
59	Electrocatalytic reduction of CO2 on electrodes modified by fac-Re(2,2'-bipyridine)(CO)3Cl complexes bonded to polypyrrole films. Journal of Molecular Catalysis, 1988, 45, 381-391.	1.2	85
60	Electrogeneration of Biotinylated Functionalized Polypyrroles for the Simple Immobilization of Enzymes. Electroanalysis, 1998, 10, 808-813.	2.9	85
61	Specific Determination of As(V) by an Acid Phosphataseâ^'Polyphenol Oxidase Biosensor. Analytical Chemistry, 2006, 78, 4985-4989.	6.5	85
62	Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. Sensors and Actuators B: Chemical, 2009, 136, 510-515.	7.8	85
63	Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Biosensors and Bioelectronics, 2007, 23, 549-555.	10.1	84
64	A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation. ACS Catalysis, 2017, 7, 4408-4416.	11.2	83
65	Development of amperometric biosensors based on the immobilization of enzymes in polymer films electrogenerated from a series of amphiphilic pyrrole derivatives. Analytica Chimica Acta, 1995, 311, 23-30.	5.4	81
66	DMF-exfoliated graphene for electrochemical NADH detection. Physical Chemistry Chemical Physics, 2011, 13, 7747.	2.8	81
67	Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes. Chemical Communications, 2013, 49, 9281.	4.1	81
68	Biosensors Based on Immobilization of Biomolecules by Electrogenerated Polymer Films. Applied Biochemistry and Biotechnology, 2000, 89, 127-138.	2.9	80
69	Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochemistry Communications, 2007, 9, 2240-2245.	4.7	80
70	Construction of Amperometric Immunosensors Based on the Electrogeneration of a Permeable Biotinylated Polypyrrole Film. Analytical Chemistry, 2004, 76, 6808-6813.	6.5	79
71	HRP/[Zn–Cr–ABTS] redox clay-based biosensor: design and optimization for cyanide detection. Biosensors and Bioelectronics, 2004, 20, 390-396.	10.1	78
72	DNA-Mediated Nanoscale Metal–Organic Frameworks for Ultrasensitive Photoelectrochemical Enzyme-Free Immunoassay. Analytical Chemistry, 2018, 90, 12284-12291.	6.5	78

#	Article	IF	CITATIONS
73	Supramolecular Immobilization of Laccase on Carbon Nanotube Electrodes Functionalized with (Methylpyrenylaminomethyl)anthraquinone for Direct Electron Reduction of Oxygen. Chemistry - A European Journal, 2013, 19, 9371-9375.	3.3	77
74	A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Chemical Communications, 2015, 51, 7447-7450.	4.1	77
75	Poly(amphiphilic pyrrole)-tyrosinase-peroxidase electrode for amplified flow injection-amperometric detection of phenol. Analytica Chimica Acta, 1996, 319, 145-151.	5.4	76
76	Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells. Frontiers in Bioengineering and Biotechnology, 2014, 2, 45.	4.1	75
77	Freestanding HRP–GOx redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications. Energy and Environmental Science, 2015, 8, 2069-2074.	30.8	75
78	Gold electrode functionalized by electropolymerization of a cyano N-substituted pyrrole: application to an impedimetric immunosensor. Journal of Electroanalytical Chemistry, 2001, 501, 62-69.	3.8	74
79	Label-free impedimetric thrombin sensor based on poly(pyrrole-nitrilotriacetic acid)-aptamer film. Biosensors and Bioelectronics, 2013, 41, 90-95.	10.1	74
80	Alkylammonium and pyridinium group-containing polypyrroles, a new class of electronically conducting anion-exchange polymers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 271, 69-81.	0.1	73
81	A Bienzyme Electrode (Alkaline Phosphataseâ^'Polyphenol Oxidase) for the Amperometric Determination of Phosphate. Analytical Chemistry, 1998, 70, 3952-3956.	6.5	73
82	Development of an "Electroptode―Immunosensor: Indium Tin Oxide-Coated Optical Fiber Tips Conjugated with an Electropolymerized Thin Film with Conjugated Cholera Toxin B Subunit. Analytical Chemistry, 2003, 75, 2633-2639.	6.5	73
83	Poly(pyrrole–biotin): a new polymer for biomolecule grafting on electrode surfaces. Electrochimica Acta, 1999, 44, 1833-1836.	5.2	72
84	Mercury–enzyme inhibition assays with an amperometric sucrose biosensor based on a trienzymatic-clay matrix. Analytica Chimica Acta, 2005, 543, 143-149.	5.4	72
85	Impedimetric Immunosensor Based on a Polypyrroleâ~ Antibiotic Model Film for the Label-Free Picomolar Detection of Ciprofloxacin. Analytical Chemistry, 2009, 81, 8405-8409.	6.5	72
86	Beyond the hype surrounding biofuel cells: What's the future of enzymatic fuel cells?. Current Opinion in Electrochemistry, 2018, 12, 148-155.	4.8	71
87	Optimization of an inorganic/bio-organic matrix for the development of new glucose biosensor membranes. Analytica Chimica Acta, 1998, 364, 165-172.	5.4	70
88	Improvement of the analytical characteristics of an enzyme electrode for free and total cholesterol via laponite clay additives. Analytica Chimica Acta, 1995, 317, 275-280.	5.4	69
89	Improvement of biosensor performances for nitrate determination using a new hydrophilic poly(pyrrole-viologen) film. Sensors and Actuators B: Chemical, 2004, 103, 397-402.	7.8	69
90	Polypyridinyl complexes of ruthenium(II) having 4,4'-dicarboxy ester-2,2'-bipyridine ligands attached covalently to polypyrrole films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 285, 133-147.	0.1	68

#	Article	IF	CITATIONS
91	Electrochemical properties of [(C5Me5)RhIII(L)Cl]+ complexes (L = 2,2′-bipyridine or 1,10-phenanthroline) Tj I generation. Journal of Electroanalytical Chemistry, 1993, 352, 213-228.	ETQq1 1 3.8	0.784314 rg8 68
92	New electropolymerizable amphiphilic viologens for the immobilization and electrical wiring of a nitrate reductase. Journal of Electroanalytical Chemistry, 1997, 433, 113-119.	3.8	68
93	Development of a PPO-poly(amphiphilic pyrrole) electrode for on site monitoring of phenol in aqueous effluents. Sensors and Actuators B: Chemical, 1999, 59, 134-139.	7.8	68
94	Trienzymatic biosensor for the determination of inorganic phosphate. Analytica Chimica Acta, 2001, 443, 1-8.	5.4	68
95	Calcium carbonate nanoparticles: A host matrix for the construction of highly sensitive amperometric phenol biosensor. Biosensors and Bioelectronics, 2007, 23, 648-654.	10.1	68
96	Solâ^'Gel Derived Composite Materials for the Construction of Oxidase/Peroxidase Mediatorless Biosensors. Chemistry of Materials, 1997, 9, 1348-1352.	6.7	66
97	Entrapment of enzyme within organic and inorganic materials for biosensor applications: Comparative study. Materials Science and Engineering C, 2006, 26, 442-447.	7.3	66
98	Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H ₂ /Air Enzymatic Fuel Cells. ACS Catalysis, 2018, 8, 3957-3964.	11.2	65
99	Zirconium–metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. Nanoscale, 2016, 8, 11649-11657.	5.6	64
100	Amperometric AlgalChlorella vulgaris Cell Biosensors Based on Alginate and Polypyrrole-Alginate Gels. Electroanalysis, 2006, 18, 1041-1046.	2.9	63
101	Amperometric Immunosensor for the Detection of Anti-West Nile Virus IgG. Analytical Chemistry, 2007, 79, 8662-8668.	6.5	62
102	Label-free impedimetric immunosensor for sensitive detection of atrazine. Electrochimica Acta, 2010, 55, 6228-6232.	5.2	62
103	Carbon/poly {pyrrole-[(C5Me5)RhIII(bpy)Cl]+} modified electrodes; a molecularly-based material for hydrogen evolution (bpy = 2,2′-bipyridine). Journal of the Chemical Society Chemical Communications, 1989, , 1259-1261.	2.0	61
104	Currentâ€Free Deposition of Prussian Blue with Organic Polymers: Towards Improved Stability and Mass Production of the Advanced Hydrogen Peroxide Transducer. Electroanalysis, 2009, 21, 409-414.	2.9	61
105	Self-Assembled Films of Hemoglobin/Laponite/Chitosan:  Application for the Direct Electrochemistry and Catalysis to Hydrogen Peroxide. Biomacromolecules, 2007, 8, 3041-3046.	5.4	60
106	Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase. Electrochemistry Communications, 2002, 4, 417-420.	4.7	59
107	Hydrogenase electrodes for fuel cells. Biochemical Society Transactions, 2005, 33, 73-75.	3.4	59
108	Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol. Biosensors and Bioelectronics, 2009, 24, 1171-1176.	10.1	59

#	Article	IF	CITATIONS
109	Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosensors and Bioelectronics, 2018, 109, 20-26.	10.1	59
110	A double-walled carbon nanotube-based glucose/H2O2 biofuel cell operating under physiological conditions. Electrochemistry Communications, 2013, 34, 105-108.	4.7	58
111	Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme. Chemistry - A European Journal, 2016, 22, 10494-10500.	3.3	58
112	Controllable Display of Sequential Enzymes on Yeast Surface with Enhanced Biocatalytic Activity toward Efficient Enzymatic Biofuel Cells. Journal of the American Chemical Society, 2020, 142, 3222-3230.	13.7	58
113	Electrogenerated trisbipyridyl Ru(II)-/nitrilotriacetic-polypyrene copolymer for the easy fabrication of label-free photoelectrochemical immunosensor and aptasensor: Application to the determination of thrombin and anti-cholera toxinantibody. Biosensors and Bioelectronics, 2013, 42, 556-562.	10.1	57
114	One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry, 2015, 106, 73-76.	4.6	57
115	Hosting Adamantane in the Substrate Pocket of Laccase: Direct Bioelectrocatalytic Reduction of O ₂ on Functionalized Carbon Nanotubes. ACS Catalysis, 2016, 6, 4259-4264.	11.2	57
116	Mesoporous TiO2 films: New catalytic electrode fabricating amperometric biosensors based on oxidases. Electroanalysis, 1997, 9, 1387-1392.	2.9	56
117	Colloidal laponite nanoparticles: Extended application in direct electrochemistry of glucose oxidase and reagentless glucose biosensing. Biosensors and Bioelectronics, 2010, 25, 1427-1433.	10.1	56
118	Multiple functionalization of single-walled carbon nanotubes by dip coating. Chemical Communications, 2011, 47, 2450-2452.	4.1	56
119	Improvement of poly(amphiphilic pyrrole) enzyme electrodes via the incorporation of synthetic laponite-clay-nanoparticles1. Talanta, 1997, 44, 2209-2215.	5.5	55
120	Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes. Journal of Proteomics, 2001, 50, 65-77.	2.4	55
121	An efficient poly(pyrrole–viologen)-nitrite reductase biosensor for the mediated detection of nitrite. Electrochemistry Communications, 2004, 6, 404-408.	4.7	54
122	Tris(bispyreneâ€bipyridine)iron(II): A Supramolecular Bridge for the Biofunctionalization of Carbon Nanotubes via ï€â€Stacking and Pyrene/î²â€Cyclodextrin Host–Guest Interactions. Chemistry - A European Journal, 2011, 17, 10216-10221.	3.3	53
123	Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing. Electrochimica Acta, 2015, 178, 108-112.	5.2	53
124	The Limiting Performance Characteristics in Bioelectrocatalysis of Hydrogenase Enzymes. Angewandte Chemie - International Edition, 2007, 46, 7244-7246.	13.8	52
125	A Pyrene-Substituted Tris(bipyridine)osmium(II) Complex as a Versatile Redox Probe for Characterizing and Functionalizing Carbon Nanotube- and Graphene-Based Electrodes. Langmuir, 2013, 29, 8736-8742.	3.5	52
126	Electrochemical nitrate biosensor based on poly(pyrrole–viologen) film–nitrate reductase–clay composite. Bioelectrochemistry, 2008, 74, 47-51.	4.6	51

#	Article	IF	CITATIONS
127	Enhancement of biosensor sensitivity in aqueous and organic solvents using a combination of poly(pyrrole-ammonium) and poly(pyrrole-lactobionamide) films as host matrices Journal of Electroanalytical Chemistry, 1998, 449, 165-171.	3.8	50
128	Reagentless biosensor for hydrogen peroxide based on self-assembled films of horseradish peroxidase/laponite/chitosan and the primary investigation on the inhibitory effect by sulfide. Biosensors and Bioelectronics, 2010, 26, 536-541.	10.1	50
129	A comparison of amperometric screen-printed, carbon electrodes and their application to the analysis of phenolic compounds present in beers. Talanta, 2001, 55, 1015-1027.	5.5	49
130	A composite poly azure B–clay–enzyme sensor for the mediated electrochemical determination of phenols. Journal of Electroanalytical Chemistry, 2002, 537, 103-109.	3.8	49
131	A New Polyphenol Oxidase Biosensor Mediated by Azure B in Laponite Clay Matrix. Electroanalysis, 2003, 15, 1506-1512.	2.9	49
132	Poly(pyrrole-manganese porphyrin): A catalytic electrode material as a model system for olefin epoxidation and drug metabolism with molecular oxygen. Journal of Electroanalytical Chemistry, 1993, 352, 181-195.	3.8	48
133	Poly(pyrrole–metallodeuteroporphyrin)electrodes: towards electrochemical biomimetic devices. Journal of Electroanalytical Chemistry, 2000, 488, 83-91.	3.8	48
134	Biotinylated alginate immobilization matrix in the construction of an amperometric biosensor: application for the determination of glucose. Analytica Chimica Acta, 2002, 453, 71-79.	5.4	48
135	Composite Carbon Paste Biosensor for Phenolic Derivatives Based on in Situ Electrogenerated Polypyrrole Binder. Analytical Chemistry, 2003, 75, 5422-5428.	6.5	48
136	A laponite clay-poly(pyrrole–pyridinium) matrix for the fabrication of conductimetric microbiosensors. Analytica Chimica Acta, 1999, 401, 117-124.	5.4	47
137	Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa. Sensors and Actuators B: Chemical, 2007, 122, 578-586.	7.8	47
138	Polycrystalline bismuth oxide films for development of amperometric biosensor for phenolic compounds. Biosensors and Bioelectronics, 2009, 24, 3671-3676.	10.1	47
139	TiO2 nanocrystals electrochemiluminescence quenching by biological enlarged nanogold particles and its application for biosensing. Biosensors and Bioelectronics, 2013, 39, 342-345.	10.1	47
140	Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chemical Science, 2014, 5, 2885-2888.	7.4	47
141	Wiring Laccase on Covalently Modified Graphene: Carbon Nanotube Assemblies for the Direct Bioâ€electrocatalytic Reduction of Oxygen. Chemistry - A European Journal, 2015, 21, 3198-3201.	3.3	47
142	Synergetic Effects of Combined Nanomaterials for Biosensing Applications. Sensors, 2017, 17, 1010.	3.8	47
143	Wearable Biosupercapacitor: Harvesting and Storing Energy from Sweat. Advanced Functional Materials, 2021, 31, 2102915.	14.9	47
144	Electrogeneration of a biotinylated poly(pyrrole–ruthenium(ii)) film for the construction of photoelectrochemical immunosensor. Chemical Communications, 2004, , 2472-2473.	4.1	46

#	Article	IF	CITATIONS
145	Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by Ï€-stacking interactions and pyrrole polymerization. Analyst, The, 2009, 134, 2412.	3.5	46
146	Three-dimensional carbon nanotube–polypyrrole–[NiFe] hydrogenase electrodes for the efficient electrocatalytic oxidation of H2. International Journal of Hydrogen Energy, 2011, 36, 12096-12101.	7.1	46
147	Direct electron transfer between tyrosinase and multi-walled carbon nanotubes for bioelectrocatalytic oxygen reduction. Electrochemistry Communications, 2012, 20, 19-22.	4.7	46
148	Highly Sensitive Bisphenol-A Electrochemical Aptasensor Based on Poly(Pyrrole-Nitrilotriacetic) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 62
149	Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina. Bioelectrochemistry, 2002, 55, 169-171.	4.6	45
150	Bioelectrocatalytic hydrogen production by hydrogenase electrodes. International Journal of Hydrogen Energy, 2002, 27, 1501-1505.	7.1	45
151	A promising biosensing-platform based on bismuth oxide polycrystalline-modified electrode: Characterization and its application in development of amperometric glucose sensor. Bioelectrochemistry, 2010, 79, 218-222.	4.6	45
152	Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes. Journal of Materials Chemistry B, 2014, 2, 2228-2232.	5.8	45
153	Magnetic Zirconium Hexacyanoferrate(II) Nanoparticle as Tracing Tag for Electrochemical DNA Assay. Analytical Chemistry, 2015, 87, 9093-9100.	6.5	45
154	Elaboration and Characterization of Spatially Controlled Assemblies of Complementary Polyphenol Oxidaseâ^ Alkaline Phosphatase Activities on Electrodes. Analytical Chemistry, 2001, 73, 2890-2897.	6.5	44
155	Electrogeneration of a Hydrophilic Cross-Linked Polypyrrole Film for Enzyme Electrode Fabrication. Application to the Amperometric Detection of Glucose. Electroanalysis, 2001, 13, 186-190.	2.9	44
156	Improved enzyme retention from an electropolymerized polypyrrole-alginate matrix in the development of biosensors. Electrochemistry Communications, 2005, 7, 1277-1282.	4.7	44
157	Determination of Phenol and Chlorinated Phenolic Compounds Based on a PPO-Bioelectrode and Its Inhibition. Analytical Letters, 1995, 28, 405-424.	1.8	43
158	Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: Direct electron transfer and multielectrocatalysis. Biosensors and Bioelectronics, 2009, 24, 3556-3561.	10.1	43
159	Non-covalent double functionalization of carbon nanotubes with a NADH oxidation Ru(<scp>ii</scp>)-based molecular catalyst and a NAD-dependent glucose dehydrogenase. Chemical Communications, 2014, 50, 11731-11734.	4.1	43
160	Electroanalytical Sensing Properties of Pristine and Functionalized Multilayer Graphene. Chemistry of Materials, 2014, 26, 1807-1812.	6.7	43
161	Enhanced Electrochemiluminescence of One-Dimensional Self-Assembled Porphyrin Hexagonal Nanoprisms. ACS Applied Materials & amp; Interfaces, 2017, 9, 20904-20912.	8.0	43
162	5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O2 biofuel cells. Biosensors and Bioelectronics, 2017, 87, 957-963.	10.1	43

#	Article	IF	CITATIONS
163	Photoresponse of platinum electrodes coated by electropolymerized polypyridyl complexes of ruthenium(II)-containing pyrrole groups in the presence of an external quencher. Film thickness effect. The Journal of Physical Chemistry, 1985, 89, 4895-4897.	2.9	42
164	A polypyrrole [RhIIIC5Me5(bpy)Cl]+ modified electrode for the reduction of NAD+ cofactor. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 315, 307-312.	0.1	42
165	A Composite Clay Glucose Biosensor Based on an Electrically Connected HRP. Electroanalysis, 2000, 12, 356-360.	2.9	42
166	HRP Wiring by Redox Active Layered Double Hydroxides: Application to the Mediated H2O2Detection. Analytical Letters, 2003, 36, 909-922.	1.8	42
167	Pyrene-adamantane-β-cyclodextrin: An efficient host–guest system for the biofunctionalization of SWCNT electrodes. Carbon, 2011, 49, 2571-2578.	10.3	42
168	A highly reversible and sensitive tyrosinase inhibition-based amperometric biosensor for benzoic acid monitoring. Sensors and Actuators B: Chemical, 2008, 134, 1016-1021.	7.8	41
169	Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: Towards the development of biocathode for biofuel cells. Journal of Power Sources, 2010, 195, 4714-4717.	7.8	41
170	Enhanced Solid-State Electrochemiluminescence of Tris(2,2′-bipyridyl)ruthenium(II) Incorporated into Electrospun Nanofibrous Mat. Analytical Chemistry, 2010, 82, 5892-5896.	6.5	40
171	A comparative physical study of two different hydrophilic synthetic latex matrices for the construction of a glucose biosensor. Talanta, 2001, 55, 889-897.	5.5	39
172	Biotinylated polypyrrole films: an easy electrochemical approach for the reagentless immobilization of bacteria on electrode surfaces. Bioelectrochemistry, 2004, 63, 297-301.	4.6	39
173	A polypyrrole cDNA electrode for the amperometric detection of the West Nile Virus. Electrochemistry Communications, 2006, 8, 1741-1748.	4.7	39
174	Hybrid layered double hydroxides-polypyrrole composites for construction of glucose/O2 biofuel cell. Electrochimica Acta, 2011, 56, 10378-10384.	5.2	39
175	Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression. Sensors and Actuators B: Chemical, 2012, 173, 760-764.	7.8	39
176	Voltammetric sensing of recombinant viral dengue virus 2 NS1 based on Au nanoparticle–decorated multiwalled carbon nanotube composites. Mikrochimica Acta, 2020, 187, 363.	5.0	39
177	Detection of Galactose and Lactose by a Poly(Amphiphilic Pyrrole)-Galactose Oxidase Electrode. Analytical Letters, 1994, 27, 1429-1442.	1.8	38
178	An easy compartment-less biofuel cell construction based on the physical co-inclusion of enzyme and mediator redox within pressed graphite discs. Electrochemistry Communications, 2010, 12, 266-269.	4.7	38
179	Singleâ€Walled Carbon Nanotubes Noncovalently Functionalized by Ruthenium(II) Complex Tagged with Pyrene: Electrochemical and Electrogenerated Chemiluminescence Properties. Chemistry - A European Journal, 2012, 18, 11564-11568.	3.3	38
180	Functionalized tungsten disulfide nanotubes for dopamine and catechol detection in a tyrosinase-based amperometric biosensor design. Journal of Materials Chemistry B, 2020, 8, 3566-3573.	5.8	38

#	Article	IF	CITATIONS
181	Triruthenium cluster-polypyrrole films: a remarkably stable immobilized relay at highly positive potentials. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 280, 213-219.	0.1	37
182	Comparative study between organic and inorganic entrapment matrices for urease biosensor development. Sensors and Actuators B: Chemical, 2007, 123, 671-679.	7.8	37
183	Design of carbon nanotube-polymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. Electrochimica Acta, 2008, 53, 3948-3954.	5.2	37
184	High sensitive trypsin activity evaluation applying a nanostructured QCM-sensor. Biosensors and Bioelectronics, 2013, 41, 862-866.	10.1	37
185	Controlled carbon nanotube layers for impedimetric immunosensors: High performance label free detection and quantification of anti-cholera toxin antibody. Biosensors and Bioelectronics, 2017, 97, 177-183.	10.1	37
186	Electropolymerized multilayer and copolymeric structures based on substituted pyrroles. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 246, 321-335.	0.1	36
187	Controlled electrochemical preparation of enzymatic layers for the design of amperometric biosensors. Electroanalysis, 1993, 5, 647-652.	2.9	36
188	Synthesis and Characterization of a New Series of Nickel(II)meso-Tetrakis (polyfluorophenyl)porphyrins Functionalized by Pyrrole Groups and Their Electropolymerized Films. Inorganic Chemistry, 1996, 35, 2659-2664.	4.0	36
189	A new method for the controlled immobilization of enzyme in inorganic gels (laponite) for amperometric glucose biosensing. Sensors and Actuators B: Chemical, 1996, 33, 44-49.	7.8	36
190	A rapid and easy procedure of biosensor fabrication by micro-encapsulation of enzyme in hydrophilic synthetic latex films. Application to the amperometric determination of glucose. Electrochemistry Communications, 2000, 2, 851-855.	4.7	36
191	Electroenzymatic Polypyrrole-intercalator Sensor for the Determination of West Nile Virus cDNA. Analytical Chemistry, 2006, 78, 7054-7057.	6.5	36
192	Aqueous dispersions of SWCNTs using pyrrolic surfactants for the electro-generation of homogeneous nanotube composites. Application to the design of an amperometric biosensor. Journal of Materials Chemistry, 2008, 18, 5129.	6.7	36
193	A H 2 /O 2 enzymatic fuel cell as a sustainable power for a wireless device. Electrochemistry Communications, 2015, 60, 216-220.	4.7	36
194	A poly[tris(N-(bipyridylylbutyl)pyrrole)ruthenium(II)]-RuO2 catalytic modified electrode for organic oxidations. Inorganic Chemistry, 1988, 27, 2389-2390.	4.0	35
195	Electrochemical detection of Arachis hypogaea(peanut) agglutinin binding to monovalent and clustered lactosyl motifs immobilized on a polypyrrole film. Chemical Communications, 2005, , 4318.	4.1	35
196	Direct electrochemistry of hemoglobin in poly(acrylonitrile-co-acrylic acid) and its catalysis to H2O2. Sensors and Actuators B: Chemical, 2009, 137, 259-265.	7.8	35
197	Biotinâ~β-Cyclodextrin: A New Host–Guest System for the Immobilization of Biomolecules. Langmuir, 2012, 28, 12569-12574.	3.5	35
198	Glucose oxidase bioanodes for glucose conversion and H2O2 production for horseradish peroxidase biocathodes in a flow through glucose biofuel cell design. Journal of Power Sources, 2018, 392, 176-180.	7.8	35

#	Article	IF	CITATIONS
199	Comparison between the performances of amperometric immunosensors for cholera antitoxin based on three enzyme markersâ~†. Talanta, 2005, 66, 15-20.	5.5	34
200	Tolerance to oxygen of hydrogen enzyme electrodes. Electrochemistry Communications, 2006, 8, 851-854.	4.7	34
201	Assembly and Stacking of Flow-through Enzymatic Bioelectrodes for High Power Glucose Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 23836-23842.	8.0	34
202	A permselective biotinylated polydicarbazole film for the fabrication of amperometric enzyme electrodes. Electrochemistry Communications, 2003, 5, 973-977.	4.7	33
203	Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Biosensors and Bioelectronics, 2009, 24, 1451-1455.	10.1	33
204	Immobilization of biotinylated biomolecules onto electropolymerized poly(pyrrole-nitrilotriacetic) Tj ETQq0 0 0 r	gBT Over 4.7	ock 10 Tf 50
205	Impedimetric biosensor for cancer cell detection. Electrochemistry Communications, 2013, 37, 36-39.	4.7	33
206	MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells. Journal of Power Sources, 2014, 255, 24-28.	7.8	33
207	Amperometric detection of pyridine nucleotides via immobilized viologen-accepting pyridine nucleotide oxidoreductase or immobilized diaphorase. Talanta, 1996, 43, 331-337.	5.5	32
208	Square wave voltammetric determination of trypsin activity. Electrochimica Acta, 2012, 76, 43-47.	5.2	32
209	A glutathione amperometric biosensor based on an amphiphilic fullerene redox mediator immobilised within an amphiphilic polypyrrole film. Journal of Materials Chemistry, 2002, 12, 1996-2000.	6.7	31
210	An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly(pyrrole-biotin). Analytical and Bioanalytical Chemistry, 2002, 374, 1056-1063.	3.7	31
211	Indium tin oxide-coated optical fiber tips for affinity electropolymerization. Materials Science and Engineering C, 2002, 21, 189-194.	7.3	31
212	An electrogenerated poly(pyrrole-benzophenone) film for the photografting of proteins. Chemical Communications, 2003, , 414-415.	4.1	31
213	Biomimetic versus enzymatic high-potential electrocatalytic reduction of hydrogen peroxide on a functionalized carbon nanotube electrode. Chemical Science, 2015, 6, 5139-5143.	7.4	31
214	Glucose fuel cell based on carbon nanotube-supported pyrene–metalloporphyrin catalysts. Journal of Materials Chemistry A, 2016, 4, 10635-10640.	10.3	31
215	Impedimetric quantification of anti-dengue antibodies using functional carbon nanotube deposits validated with blood plasma assays. Electrochimica Acta, 2018, 274, 84-90.	5.2	31
216	Fabrication of biosensors by attachment of biological macromolecules to electropolymerized conducting films. Analusis - European Journal of Analytical Chemistry, 1999, 27, 558-563.	0.4	31

#	Article	IF	CITATIONS
217	A new strategy for the construction of amperometric dehydrogenase electrodes based on laponite gel-methylene blue polymer as the host matrix. Journal of Electroanalytical Chemistry, 1996, 406, 243-246.	3.8	30
218	A Poly(amphiphilic pyrrole)â~Flavin Reductase Electrode for Amperometric Determination of Flavins. Analytical Chemistry, 1997, 69, 3095-3099.	6.5	30
219	Impedimetric measurements on polarized functionalized platinum electrodes: application to direct immunosensing. Materials Science and Engineering C, 1997, 5, 111-119.	7.3	30
220	Novel electro-oxidizable chiral N-substituted dicarbazoles and resulting electroactive films for covalent attachment of proteins. Tetrahedron Letters, 2000, 41, 3725-3729.	1.4	30
221	A membrane based reactor with an enzyme immobilized by an avidin–biotin molecular recognition in a polymer matrix. Journal of Membrane Science, 2000, 176, 169-176.	8.2	30
222	Biotinylated Polypyrrole Modified Quartz Crystal Microbalance for the Fast and Reagentless Determination of Avidin Concentration. Electroanalysis, 2001, 13, 971-974.	2.9	30
223	A new approach for nitrite determination based on a HRP/catalase biosensor. Materials Science and Engineering C, 2008, 28, 726-730.	7.3	30
224	Pyrene functionalized single-walled carbon nanotubes as precursors for high performance biosensors. Electrochimica Acta, 2010, 55, 7800-7803.	5.2	30
225	Biosensors based on combined optical and electrochemical transduction for molecular diagnostics. Expert Review of Molecular Diagnostics, 2011, 11, 533-546.	3.1	30
226	Fe-MOGs-based enzyme mimetic and its mediated electrochemiluminescence for in situ detection of H2O2 released from Hela cells. Biosensors and Bioelectronics, 2021, 184, 113216.	10.1	30
227	Controlled permeability of functionalized polypyrrole films by use of different electrolyte anion sizes in the electropolymerization step. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 310, 71-87.	0.1	29
228	Photocurrent generation by MWCNTs functionalized with bis-cyclometallated Ir(iii)- and trisbipyridyl ruthenium(ii)- polypyrrole films. Journal of Materials Chemistry, 2011, 21, 3910.	6.7	29
229	Robust bifunctional buckypapers from carbon nanotubes and polynorbornene copolymers for flexible engineering of enzymatic bioelectrodes. Carbon, 2016, 107, 542-547.	10.3	29
230	In situ formed copper nanoparticles templated by TdT-mediated DNA for enhanced SPR sensor-based DNA assay. Biosensors and Bioelectronics, 2017, 97, 1-7.	10.1	29
231	Redox-Active Glyconanoparticles as Electron Shuttles for Mediated Electron Transfer with Bilirubin Oxidase in Solution. Journal of the American Chemical Society, 2017, 139, 16076-16079.	13.7	29
232	Direct Electrochemistry of Bilirubin Oxidase from <i>Magnaporthe orizae</i> on Covalentlyâ€Functionalized MWCNT for the Design of Highâ€Performance Oxygenâ€Reducing Biocathodes. Chemistry - A European Journal, 2018, 24, 8404-8408.	3.3	29
233	Carbon nanotube-based flexible biocathode for enzymatic biofuel cells by spray coating. Journal of Power Sources, 2018, 408, 1-6.	7.8	29
234	Detection of carbohydrate-binding proteins by oligosaccharide-modified polypyrrole interfaces using electrochemical surface plasmon resonance. Analyst, The, 2008, 133, 206-212.	3.5	28

#	Article	IF	CITATIONS
235	Glucose Oxidase Immobilized in Alginate/Layered Double Hydroxides Hybrid Membrane and Its Biosensing Application. Analytical Sciences, 2009, 25, 1421-1425.	1.6	28
236	Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Singleâ€walled Carbon Nanotube Modified Electrodes. Electroanalysis, 2010, 22, 2973-2978.	2.9	28
237	A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells. Joule, 2019, 3, 2020-2029.	24.0	28
238	Enhanced Electrochemiluminescence of Porphyrin-Based Metal–Organic Frameworks Controlled via Coordination Modulation. Analytical Chemistry, 2020, 92, 1916-1924.	6.5	28
239	ATMP derived cobalt-metaphosphate complex as highly active catalyst for oxygen reduction reaction. Journal of Catalysis, 2020, 387, 129-137.	6.2	28
240	An original electroenzymatic system: Flavin reductase-riboflavin for the improvement of dehydrogenase-based biosensors. Application to the amperometric detection of lactate. Electroanalysis, 1997, 9, 685-688.	2.9	27
241	Poly(dicarbazole-N-hydroxysuccinimide) film: a new polymer for the reagentless grafting of enzymes and redox mediators. Electrochemistry Communications, 2000, 2, 827-831.	4.7	27
242	Fabrication of organic phase biosensors based on multilayered polyphenol oxidase protected by an alginate coating. Electrochemistry Communications, 2001, 3, 727-732.	4.7	27
243	Polyphenol oxidase-catechol: an electroenzymatic model system for characterizing the performance of matrices for biosensors. Talanta, 1996, 43, 1615-1619.	5.5	26
244	A poly(pyrrole-Cobalt(II)deuteroporphyrin) electrode for the potentiometric determination of nitrite. Sensors, 2003, 3, 213-222.	3.8	26
245	Rutin Determination at an Amperometric Biosensor. Electroanalysis, 2007, 19, 253-258.	2.9	26
246	Urease–gelatin interdigitated microelectrodes for the conductometric determination of protease activity. Biosensors and Bioelectronics, 2008, 24, 489-492.	10.1	26
247	Electrochromic response and electrochemiluminescence of CdS nanocrystals thin film in aqueous solution. Electrochemistry Communications, 2010, 12, 713-716.	4.7	26
248	Voltammetric detection of heparin based on anion exchange at electropolymeric film of pyrrole-alkylammonium cationic surfactant and MWCNTs composite. Electrochemistry Communications, 2013, 34, 339-343.	4.7	26
249	Multiwalled Carbon Nanotube aCO ₃ Nanoparticle Composites for the Construction of a Tyrosinaseâ€Based Amperometric Dopamine Biosensor. Electroanalysis, 2013, 25, 613-619.	2.9	26
250	Highly active M2P2O7@NC (M = Co and Zn) for bifunctional electrocatalysts for ORR and HER. Journal of Catalysis, 2019, 377, 20-27.	6.2	26
251	Amperometric detection of phenolic compounds by polypyrrole-based composite carbon paste electrodes. Bioelectrochemistry, 2004, 63, 291-296.	4.6	25
252	Polypyrrolic Bipyridine Bis(phenantrolinequinone) Ru(II) Complex/Carbon Nanotube Composites for NAD-Dependent Enzyme Immobilization and Wiring. Analytical Chemistry, 2014, 86, 4409-4415.	6.5	25

#	Article	IF	CITATIONS
253	Chemically reduced electrospun polyacrilonitrile–carbon nanotube nanofibers hydrogels as electrode material for bioelectrochemical applications. Carbon, 2015, 87, 233-238.	10.3	25
254	Polyoxometalate [PMo11O39]7â^'/carbon nanocomposites for sensitive amperometric detection of nitrite. Electrochimica Acta, 2016, 222, 402-408.	5.2	25
255	Rational Design of a Highly Dispersed Fe–N–C Nanosheet with 1,10-Phenanthroline-2,9-Dicarboxylic Acid as a Preorganized Ligand: Boosted Electrochemiluminescence Detection of Tetracycline. Analytical Chemistry, 2022, 94, 1325-1332.	6.5	25
256	Dramatically Enhanced Solid‣tate Electrochemiluminescence of CdTe Quantum Dots Composed with TiO ₂ Nanoparticles. Chemistry - A European Journal, 2012, 18, 1595-1598.	3.3	24
257	Organic phase PPO biosensor based on hydrophilic films of electropolymerized polypyrrole. Electrochimica Acta, 2005, 50, 3713-3718.	5.2	23
258	Poly(brilliant cresyl blue) electrogenerated on single-walled carbon nanotubes modified electrode and its application in mediated biosensing system. Sensors and Actuators B: Chemical, 2011, 152, 14-20.	7.8	23
259	An enzymatic biofuel cell based on electrically wired polyphenol oxidase and glucose oxidase operating under physiological conditions. Electrochimica Acta, 2012, 85, 278-282.	5.2	23
260	Vibrio cholerae detection: Traditional assays, novel diagnostic techniques and biosensors. TrAC - Trends in Analytical Chemistry, 2016, 79, 199-209.	11.4	23
261	ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. Biosensors and Bioelectronics, 2019, 143, 111601.	10.1	23
262	Electrochemical fabrication of novel fluorescent polymeric film: Poly(pyrrole–pyrene). Electrochemistry Communications, 2008, 10, 1423-1426.	4.7	22
263	Osmium(II) Complexes Bearing Chelating N-Heterocyclic Carbene and Pyrene-Modified Ligands: Surface Electrochemistry and Electron Transfer Mediation of Oxygen Reduction by Multicopper Enzymes. Organometallics, 2016, 35, 2987-2992.	2.3	22
264	Electrogenerated Poly(Chiral Dicarbazole) Films for the Reagentless Grafting of Enzymes. Electroanalysis, 2000, 12, 1107-1112.	2.9	21
265	A Polypyrrole-Bienzyme Electrode (Salicylate Hydroxylase-Polyphenol Oxidase) for the Interference-Free Determination of Salicylate. Electroanalysis, 2001, 13, 906-910.	2.9	21
266	Insulator semiconductor structures coated with biodegradable latexes as encapsulation matrix for ureaseâ [~] †. Biosensors and Bioelectronics, 2005, 20, 2318-2323.	10.1	21
267	Amperometric immunosensor for the detection of anti-West Nile virus IgG using a photoactive copolymer. Enzyme and Microbial Technology, 2007, 40, 403-408.	3.2	21
268	A new HRP/catalase biosensor based on microconductometric transduction for nitrite determination. Materials Science and Engineering C, 2009, 29, 1919-1922.	7.3	21
269	3D-nanostructured scaffold electrodes based on single-walled carbon nanotubes and nanodiamonds for high performance biosensors. Carbon, 2013, 61, 349-356.	10.3	21
270	Redox-Active Carbohydrate-Coated Nanoparticles: Self-Assembly of a Cyclodextrin–Polystyrene Glycopolymer with Tetrazine–Naphthalimide. Langmuir, 2016, 32, 11939-11945.	3.5	21

#	Article	IF	CITATIONS
271	Solubilized Enzymatic Fuel Cell (SEFC) for Quasi-Continuous Operation Exploiting Carbohydrate Block Copolymer Glyconanoparticle Mediators. ACS Energy Letters, 2019, 4, 142-148.	17.4	21
272	Poly (Amphiphilic PyrrOLe)-PPO Electrodes for Organic-Phase Enzymatic Assay. Analytical Letters, 1995, 28, 1005-1016.	1.8	20
273	Detection of glutamate released by neurons with an enzyme-based microelectrode: applications and limitations. Electrochimica Acta, 1997, 42, 3217-3223.	5.2	20
274	Association of a poly(4-vinylpyridine-co-styrene) membrane with an inorganic/organic mixed matrix for the optimization of glucose biosensors. Sensors and Actuators B: Chemical, 1999, 58, 380-383.	7.8	20
275	Use of competitive inhibition for driving sensitivity and dynamic range of urea ENFETs. Biosensors and Bioelectronics, 2003, 18, 345-351.	10.1	20
276	Electrodeposited Biotinylated Polypyrrole as an Immobilization Method for Impedimetric Immunosensors. IEEE Sensors Journal, 2004, 4, 559-567.	4.7	20
277	From gold porphyrins to gold nanoparticles: catalytic nanomaterials for glucose oxidation. Nanoscale, 2014, 6, 8556-8560.	5.6	20
278	Micro- to nanostructured poly(pyrrole-nitrilotriacetic acid) films via nanosphere templates: applications to 3D enzyme attachment by affinity interactions. Analytical and Bioanalytical Chemistry, 2014, 406, 1141-1147.	3.7	20
279	Diazonium Electrografting <i>vs</i> . Physical Adsorption of Azure A at Carbon Nanotubes for Mediated Glucose Oxidation with FADâ€GDH. ChemElectroChem, 2020, 7, 4543-4549.	3.4	20
280	Organosilasesquioxane-laponite clay sols: a versatile approach for electrode surface modification. Journal of Electroanalytical Chemistry, 1996, 401, 253-256.	3.8	19
281	Synthesis of Vitamin-B12 Derivatives with an Electropolymerizable Side Chain. Helvetica Chimica Acta, 1998, 81, 1117-1126.	1.6	19
282	Electrogeneration and characterization of a poly(pyrrole–nickel (II) chlorin) electrode. Electrochemistry Communications, 2002, 4, 426-430.	4.7	19
283	Characterization of thin poly(pyrrole-benzophenone) film morphologies electropolymerized on indium tin oxide coated optic fibers for electrochemical and optical biosensing. Electrochimica Acta, 2008, 53, 5128-5135.	5.2	19
284	Biofunctionalizable flexible bucky paper by combination of multi-walled carbon nanotubes and polynorbornene-pyrene – Application to the bioelectrocatalytic reduction of oxygen. Carbon, 2015, 93, 713-718.	10.3	19
285	Enzymatic versus Electrocatalytic Oxidation of NADH at Carbonâ€Nanotube Electrodes Modified with Glucose Dehydrogenases: Application in a Buckyâ€Paperâ€Based Glucose Enzymatic Fuel Cell. ChemElectroChem, 2016, 3, 2058-2062.	3.4	19
286	A Poly(pyrrole-copper(II) deuteroporphyrin) Modified Electrode. Journal of Porphyrins and Phthalocyanines, 1998, 02, 39-43.	0.8	18
287	Electrogeneration and characterization of photoactivable films and their application for enzyme grafting. Electrochemistry Communications, 2005, 7, 808-814.	4.7	18
288	Amperometric Biosensors Based on Biotinylated Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 6042-6046.	0.9	18

#	Article	IF	CITATIONS
289	Labelâ€Free Photoelectrochemical Detection of Doubleâ€Stranded HIV DNA by Means of a Metallointercalatorâ€Functionalized Electrogenerated Polymer. Chemistry - A European Journal, 2014, 20, 15555-15560.	3.3	18
290	Supramolecular immobilization of bio-entities for bioelectrochemical applications. New Journal of Chemistry, 2014, 38, 5173-5180.	2.8	18
291	Monofunctional pyrenes at carbon nanotube electrodes for direct electron transfer H2O2 reduction with HRP and HRP-bacterial nanocellulose. Biosensors and Bioelectronics, 2021, 187, 113304.	10.1	18
292	Amperometric Glucose Biosensors Based on Composite Polymeric Structures to Prevent Interferences. Analytical Letters, 2000, 33, 1733-1753.	1.8	17
293	Organic Phase PPO Biosensors Prepared by Multilayer Deposition of Enzyme and Alginate Through Avidin-Biotin Interactions. Electroanalysis, 2004, 16, 2022-2029.	2.9	17
294	ITO pattern fabrication of glass platforms for electropolymerization of light sensitive polymer for its conjugation to bioreceptors on a micro-array. Talanta, 2008, 75, 564-571.	5.5	17
295	Carbonâ€Nanotubeâ€Supported Bioâ€Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. Angewandte Chemie, 2017, 129, 1871-1875.	2.0	17
296	Electrosynthesis of Pyrenediones on Carbon Nanotube Electrodes for Efficient Electron Transfer with FADâ€dependent Glucose Dehydrogenase in Biofuel Cell Anodes. ChemElectroChem, 2019, 6, 5242-5247.	3.4	17
297	A bifunctional triblock polynorbornene/carbon nanotube buckypaper bioelectrode for low-potential/high-current thionine-mediated glucose oxidation by FAD-GDH. Journal of Materials Chemistry A, 2019, 7, 1447-1450.	10.3	17
298	Recent advancements in the field of flexible/wearable enzyme fuel cells. Biosensors and Bioelectronics, 2022, 214, 114545.	10.1	17
299	Peroxidase-glucose oxidase-poly(amphiphilic pyrrole) bioelectrode for selectively mediated amperometric detection of glucose. Electroanalysis, 1997, 9, 998-1004.	2.9	16
300	Biofunctionalization of Multiwalled Carbon Nanotubes by Irradiation of Electropolymerized Poly(pyrrole–diazirine) Films. Chemistry - A European Journal, 2013, 19, 9639-9643.	3.3	16
301	Comparison of Commercial and Labâ€made MWCNT Buckypaper: Physicochemical Properties and Bioelectrocatalytic O ₂ Reduction. Electroanalysis, 2018, 30, 1511-1520.	2.9	16
302	Electrocatalytic oxidation of alcohols on carbon electrodes modified by functionalized polypyrrole–RuO2 films. Journal of Molecular Catalysis, 1992, 71, 303-315.	1.2	15
303	A Reagentless Biosensor for the Amperometric Determination of NADH. Electroanalysis, 1998, 10, 521-525.	2.9	15
304	Electrogenerated indium tin oxide-coated glass surface with photosensitive interfaces: Surface analysis. Biosensors and Bioelectronics, 2007, 22, 2230-2236.	10.1	15
305	Design of new electropolymerized polypyrrole films of polyfluorinated Zn(II) and Mn(III) porphyrins: Towards electrochemical sensors. Materials Science and Engineering C, 2008, 28, 731-738.	7.3	15
306	Characterization of multi-walled carbon nanotube electrodes functionalized by electropolymerized tris(pyrrole-ether bipyridine) ruthenium (II). Electrochimica Acta, 2011, 56, 3633-3640.	5.2	15

#	Article	IF	CITATIONS
307	Solidâ€5tate Electrochemiluminescence of Fâ€doped SnO ₂ Nanocrystals and Its Sensing Application. Electroanalysis, 2012, 24, 1267-1271.	2.9	15
308	High performance miniature glucose/O2 fuel cell based on porous silicon anion exchange membrane. Electrochemistry Communications, 2015, 54, 10-13.	4.7	15
309	Immobilization of flavin coenzyme in poly(pyrrole-alkylammonium) and characterization of the resulting bioelectrode. Journal of Electroanalytical Chemistry, 1992, 338, 339-345.	3.8	14
310	CONTROLLED FABRICATION OF GLUCOSE AND CATECHOL MICROBIOSENSORS VIA ELECTROPOLYMERIZED BIOTINYLATED POLYPYRROLE FILMS. Analytical Letters, 2001, 34, 61-70.	1.8	14
311	A new biotinylated tris bipyridinyl iron(ii) complex as redox biotin-bridge for the construction of supramolecular biosensing architectures. Chemical Communications, 2004, , 324.	4.1	14
312	Electrochemistry and electrochemiluminescence for the host–guest system laponite–tris(2,2′-bipyridyl)ruthenium(II). Electrochemistry Communications, 2010, 12, 227-230.	4.7	14
313	Polymerization amplified SPRâ^'DNA assay on noncovalently functionalized graphene. Biosensors and Bioelectronics, 2017, 89, 319-325.	10.1	14
314	Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion Sensing. ACS Applied Materials & Interfaces, 2019, 11, 32366-32372.	8.0	14
315	Polymers and nano-objects, a rational combination for developing health monitoring biosensors. Sensors and Actuators B: Chemical, 2021, 348, 130700.	7.8	14
316	Electrochemically controlled release of chemicals from redox-active polymer films. Journal of Electroanalytical Chemistry, 1994, 375, 233-241.	3.8	13
317	Fabrication of amperometric biosensors by entrapment of enzymes in functionalized polypyrrole films. Canadian Journal of Chemical Engineering, 1998, 76, 1000-1007.	1.7	13
318	Functionalized polypyrroles : a sophisticated glue for the immobilization and electrical wiring of enzymes. Synthetic Metals, 1999, 102, 1366-1369.	3.9	13
319	Biopolymeric receptor for peptide recognition by molecular imprinting approach—Synthesis, characterization and application. Materials Science and Engineering C, 2014, 45, 383-394.	7.3	13
320	First Occurrence of Tetrazines in Aqueous Solution: Electrochemistry and Fluorescence. ChemPhysChem, 2015, 16, 3695-3699.	2.1	13
321	Laccase wiring on free-standing electrospun carbon nanofibres using a mediator plug. Chemical Communications, 2015, 51, 14574-14577.	4.1	13
322	Simultaneous Determination of Ascorbic and Uric Acids in Urine Using an Innovative Electrochemical Sensor Based on Î ² -Cyclodextrin. Analytical Letters, 2015, 48, 89-99.	1.8	13
323	Towards eco-friendly power sources: In series connected glucose biofuel cells power a disposable ovulation test. Sensors and Actuators B: Chemical, 2018, 277, 360-364.	7.8	13
324	A Diethyleneglycolâ€Pyreneâ€Modified Ru(II) Catalyst for the Design of Buckypaper Bioelectrodes and the Wiring of Glucose Dehydrogenases. ChemElectroChem, 2019, 6, 3621-3626.	3.4	13

#	Article	IF	CITATIONS
325	Electropolymerized biotinylated poly (pyrrole–viologen) film as platform for the development of reagentless impedimetric immunosensors. Electrochemistry Communications, 2010, 12, 311-314.	4.7	12
326	Enhanced electrochemiluminescence of peroxydisulfate by electrodeposited Au nanoparticles and its biosensing application via integrating biocatalytic precipitation using self-assembly bi-enzymes. Journal of Electroanalytical Chemistry, 2013, 703, 9-13.	3.8	12
327	Graphene/clay composite electrode formed by exfoliating graphite with Laponite for simultaneous determination of ascorbic acid, dopamine, and uric acid. Monatshefte Für Chemie, 2014, 145, 1389-1394.	1.8	12
328	Synthesis and electrochemical characterization of original "TEMPO―functionalized multiwall carbon nanotube materials: Application to iron (II) detection. Electrochemistry Communications, 2015, 60, 131-134.	4.7	12
329	Ferricyanide confined into the integrative system of pyrrolic surfactant and SWCNTs: The enhanced electrochemial sensing of paracetamol. Electrochimica Acta, 2015, 186, 16-23.	5.2	12
330	Fluorescent and redox tetrazine films by host-guest immobilization of tetrazine derivatives within poly(pyrrole-β-cyclodextrin) films. Journal of Electroanalytical Chemistry, 2016, 781, 36-40.	3.8	12
331	Characterization of Electrogenerated Polypyrroleâ^'Benzophenone Films Coated on Poly(pyrrole-methyl metacrylate) Optic-Conductive Fibers. Langmuir, 2009, 25, 10384-10389.	3.5	11
332	Amperometric biosensor based on the electro-copolymerization of a conductive biotinylated-pyrrole and alginate-pyrrole. Synthetic Metals, 2009, 159, 1117-1122.	3.9	11
333	Electrogenerated chemiluminescence of poly[(2,2′-bipyridyl)(4-(2-pyrrol-1-ylethyl)-4′-methyl-2,2′-bipyridyl)2]ruthenium (II) film. Electrochemistry Communications, 2010, 12, 905-908.	4.7	11
334	A Fast and Direct Amperometric Determination of Hg ²⁺ by a Bienzyme Electrode Based on the Competitive Activities of Glucose Oxidase and Laccase. Electroanalysis, 2011, 23, 1776-1779.	2.9	11
335	Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells. Nanoscale, 2016, 8, 10433-10440.	5.6	11
336	Graphene-based Biosensors for Dopamine Determination. Procedia Technology, 2017, 27, 106-107.	1.1	11
337	Urease immobilization on biotinylated polypyrrole coated ChemFEC devices for urea biosensor development. Irbm, 2008, 29, 192-201.	5.6	10
338	Electrochemical nanopatterning of an electrogenerated photosensitive poly-[trisbipyridinyl-pyrrole ruthenium(II)] metallopolymer by nanosphere lithography. Electrochemistry Communications, 2014, 46, 75-78.	4.7	10
339	POXC Laccase from <i>Pleurotus ostreatus</i> : A Highâ€Performance Multicopper Enzyme for Direct Oxygen Reduction Reaction Operating in a Protonâ€Exchange Membrane Fuel Cell. ChemElectroChem, 2019, 6, 1023-1027.	3.4	10
340	Postsynthesis Ligand Exchange Induced Porphyrin Hybrid Crystalloid Reconstruction for Self-Enhanced Electrochemiluminescence. Analytical Chemistry, 2020, 92, 15270-15274.	6.5	10
341	Insights into carbon nanotube-assisted electro-oxidation of polycyclic aromatic hydrocarbons for mediated bioelectrocatalysis. Chemical Communications, 2021, 57, 8957-8960.	4.1	10
342	Freestanding biopellet electrodes based on carbon nanotubes and protein compression for direct and mediated bioelectrocatalysis. Electrochemistry Communications, 2021, 122, 106895.	4.7	10

#	Article	IF	CITATIONS
343	Preparation and characterization of a novel pyrrole-benzophenone copolymerized silica nanocomposite as a reagent in a visual immunologic-agglutination test. Talanta, 2008, 75, 1324-1331.	5.5	9
344	Enhanced solid-state electrochemiluminescence of Ru(bpy)32+ immobilized on a laponite gel-state network and its glucose biosensing application. RSC Advances, 2012, 2, 10813.	3.6	9
345	Biofunctionalization of Multiwalled Carbon Nanotubes by Electropolymerized Poly(pyrroleâ€concanavalinâ€A) Films. Chemistry - A European Journal, 2014, 20, 13561-13564.	3.3	9
346	A label-free photoelectrochemical cocaine aptasensor based on an electropolymerized ruthenium-intercalator complex. Electrochimica Acta, 2016, 219, 82-87.	5.2	9
347	Hydrazine Electrooxidation with PdNPs and Its Application for a Hybrid Self-Powered Sensor and N ₂ H ₄ Decontamination. Journal of the Electrochemical Society, 2017, 164, H3052-H3057.	2.9	9
348	Postmodulation of the Metal–Organic Framework Precursor toward the Vacancy-Rich Cu _{<i>x</i>} O Transducer for Sensitivity Boost: Synthesis, Catalysis, and H ₂ O ₂ Sensing. Analytical Chemistry, 2021, 93, 11066-11071.	6.5	9
349	Electrochemical Characterization of Biotin Functionalized and Regular Single-Walled Carbon Nanotube Coatings. Application to Amperometric Glucose Biosensors. Sensor Letters, 2009, 7, 801-805.	0.4	9
350	Synthesis and Electrochemical Characterization of a New Electropolymerizable Hydrophilic Viologen Designed for Enzyme Wiring. Mikrochimica Acta, 2003, 143, 139-145.	5.0	8
351	Biological Fuel Cells: Cardinal Advances and Critical Challenges. ChemElectroChem, 2014, 1, 1702-1704.	3.4	8
352	Nanostructured photoactivatable electrode surface based on pyrene diazirine. Electrochemistry Communications, 2017, 80, 5-8.	4.7	8
353	Self-assembled meso-tetra(4-carboxyphenyl)porphine: Structural modulation using surfactants for enhanced photoelectrochemical properties. Electrochimica Acta, 2019, 299, 560-566.	5.2	8
354	Microcapsule-based biosensor containing catechol for the reagent-free inhibitive detection of benzoic acid by tyrosinase. Biosensors and Bioelectronics, 2021, 180, 113137.	10.1	8
355	A quinhydrone biofuel cell based on an enzyme-induced pH gradient. Journal of Power Sources, 2011, 196, 1329-1332.	7.8	7
356	A Solidâ€State Electrochemiluminescence Ethanol Biosensor Based on Electrogenerated Poly(pyrroleâ€tris(2,2′â€bipyridyl)ruthenium(II)) Film/Alcohol Dehydrogenase/Laponite Composite. Electroanalysis, 2013, 25, 697-702.	2.9	7
357	Mass effect of redox reactions: A novel mode for surface plasmon resonance-based bioanalysis. Biosensors and Bioelectronics, 2015, 74, 183-189.	10.1	7
358	Multi-tailoring of a modified MOF-derived Cu _{<i>x</i>} O electrochemical transducer for enhanced hydrogen peroxide sensing. Analyst, The, 2021, 147, 72-79.	3.5	7
359	Nitrobenzoic acid-functionalized gold nanoparticles: DET promoter of multicopper oxidases and electrocatalyst for NAD-dependent glucose dehydrogenase. Electrochimica Acta, 2022, 408, 139894.	5.2	7
360	Dismutation of Hydrogen Peroxide from Water Medium by Catalytic Reactive Membrane Immobilizing Peroxidase and Catalase by Molecular Recognition Process. Separation Science and Technology, 2003, 38, 1291-1306.	2.5	6

#	Article	lF	CITATIONS
361	New flavin and deazaflavin oligonucleotide conjugates for the amperometric detection of DNA hybridization. Chemical Communications, 2004, , 1624-1625.	4.1	6
362	Carbon Cavity Microelectrode for Electrical Wiring of Enzyme by Insoluble Electroactive Species in Aqueous Media. Electroanalysis, 2008, 20, 750-756.	2.9	6
363	In situ synthesis of stable mixed ligand Fe2+ complexes on bipyridinyl functionalized electrodes and nanotube supports. Chemical Communications, 2012, 48, 6121.	4.1	6
364	A biosensing application based on quenching the enhanced electrochemiluminescence of poly[tris(N-bipyridylethyl)pyrrole] ruthenium(II) film by Au nanoparticles. Journal of Electroanalytical Chemistry, 2013, 692, 60-65.	3.8	6
365	Flexible metallization of electrospun nanofibers: Dramatically enhanced solid-state electrochemistry and electrochemiluminescence of the immobilized tris(2,2′-bipyridyl)ruthenium(II). Sensors and Actuators B: Chemical, 2013, 181, 159-165.	7.8	6
366	Functionalization of Contacted Carbon Nanotube Forests by Dip Coating for Highâ€Performance Biocathodes. ChemElectroChem, 2020, 7, 4685-4689.	3.4	6
367	A membraneless starch/O2 biofuel cell based on bacterial surface regulable displayed sequential enzymes of glucoamylase and glucose dehydrogenase. Biosensors and Bioelectronics, 2022, 207, 114197.	10.1	6
368	A simple strategy based on photobiotin irradiation for the photoelectrochemical immobilization of proteins on electrode surfaces. Materials Science and Engineering C, 2006, 26, 436-441.	7.3	5
369	Poly(methyl metacrylate) conductive fiber optic transducers as dual biosensor platforms. Biosensors and Bioelectronics, 2009, 24, 3683-3687.	10.1	5
370	Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: toward the impedimetric detection of lectins. Frontiers in Chemistry, 2013, 1, 10.	3.6	5
371	Layer-by-layer scaffold formation using magnetic attraction between HiPCO® single-walled carbon nanotubes and magnetic nanoparticles: Application for high performance immunosensors. Carbon, 2015, 81, 731-738.	10.3	5
372	Flotation Assembly of Large-Area Ultrathin MWCNT Nanofilms for Construction of Bioelectrodes. Nanomaterials, 2017, 7, 342.	4.1	5
373	Functionalizable Glyconanoparticles for a Versatile Redox Platform. Nanomaterials, 2021, 11, 1162.	4.1	5
374	Implantable Glucose BioFuel Cells for Medical Devices. Journal of Physics: Conference Series, 2013, 476, 012063.	0.4	4
375	1. Buckypapers for bioelectrochemical applications. , 2019, , 1-22.		4
376	Trialkoxyheptazine-Based Glyconanoparticles for Fluorescence in Aqueous Solutions and on Surfaces via Controlled Binding in Space. ACS Macro Letters, 2022, 11, 135-139.	4.8	4
377	Organic βâ€cyclodextrin Nanoparticle: An Efficient Building Block Between Functionalized Poly(pyrrole) Electrodes and Enzymes. Small, 2022, 18, e2105880.	10.0	4
378	Electrogeneration of polymer films functionalized by fluoroquinolone models for the development of antibiotic immunosensor. Irbm, 2008, 29, 181-186.	5.6	3

#	Article	IF	CITATIONS
379	Electrochemical Sensing of Trypsin Activity. ECS Electrochemistry Letters, 2012, 1, B1-B3.	1.9	3
380	Unusual Fe(CN) ₆ ^{3–/4–} Capture Induced by Synergic Effect of Electropolymeric Cationic Surfactant and Graphene: Characterization and Biosensing Application. ACS Applied Materials & Interfaces, 2014, 6, 21161-21166.	8.0	3
381	Hollow Bioelectrodes Based on Buckypaper Assembly. Application to the Electroenzymatic Reduction of O2. Nanomaterials, 2022, 12, 2399.	4.1	3
382	Biological Sensors Based on Electropolymerized Films. ECS Meeting Abstracts, 2006, , .	0.0	2
383	Procedure 26 Construction of amperometric immunosensors for the analysis of cholera antitoxin and comparison of the performances between three different enzyme markers. Comprehensive Analytical Chemistry, 2007, , e185-e194.	1.3	2
384	Electrochemical polymerization of N-substituted pyrrols for the development of novel lactate biosensor. Moscow University Chemistry Bulletin, 2010, 65, 49-55.	0.6	2
385	Prussian blue-functionalised graphene in the amperometric detection of peroxide and hydrazine. Technology, 2013, 01, 58-62.	1.4	2
386	Electrochemical Sensing of Trypsin Activity. ECS Transactions, 2013, 45, 23-28.	0.5	2
387	Permeability improvements of electropolymerized polypyrrole films using dissolvable nano-CaCO3 particle templates. Physical Chemistry Chemical Physics, 2014, 16, 5052.	2.8	2
388	Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET). Biosensors and Bioelectronics, 2016, 85, 90-95.	10.1	2
389	Conductive Polymers, Immobilization of Macromolecular Bio-Entities. , 2014, , 253-260.		2
390	Poly(Amphiphilic Pyrrole)-Enzyme Electrode: A New Approach for Biosensor Construction. , 1993, , 231-244.		2
391	Enzymatic Glucose Biofuel Cells: Shapes and Growth of Carbon Nanotube Matrices. , 0, , 1-10.		2
392	2-Methylimidazole-tuned "4-Self―strategy based on benzimidazole-5-carboxylate for boosting oxygen reduction electrocatalysis. Applied Surface Science, 2022, 591, 153066.	6.1	2
393	Permeability Improvement of Electropolymerized Polypyrrole Films in Water Using Magnetic Hydrophilic Microbeads. Electroanalysis, 2009, 21, 887-890.	2.9	1
394	The unmediated choline sensor based on layered double hydroxides in hydrogen peroxide detection mode. Science in China Series B: Chemistry, 2009, 52, 2281-2286.	0.8	1
395	Solid-State Electrochemistry and Electrochemiluminescence of Porous Thin Film of [(2,2′-Bipyridyl)(4-(2-pyrrol-1-ylethyl)-4′-methyl-2,2′-bipyridyl)2]ruthenium(II) Monomer Precipitation. Electroanalysis, 2011, 23, 1306-1310.	2.9	1
396	Biofuel Cells. , 2013, , 409-423.		1

#	Article	IF	CITATIONS
397	Nanotubes and nanoparticles based 3D scaffolds for the construction of high performance Biosensors. Materials Research Society Symposia Proceedings, 2014, 1700, 97-102.	0.1	1
398	Towards a Versatile Photoreactive Platform for Biosensing Applications. Journal of Analysis and Testing, 2017, 1, 1.	5.1	1
399	Carbon Nanotube Matrices for Enzymatic Glucose Biofuel Cells: Shapes and Growth. , 2014, , 1-10.		1
400	Chapter 18 Immunosensors for clinical and environmental applications based on electropolymerized films: analysis of cholera toxin and hepatitis C virus antibodies in water and serum. Comprehensive Analytical Chemistry, 2007, 49, 381-402.	1.3	0
401	Functionalized Single-Walled Carbon Nanotubes for Electrochemical Biosensor devices. ECS Meeting Abstracts, 2008, , .	0.0	0
402	Nanomaterials for Enzyme Biofuel Cells. , 2013, , 49-66.		0
403	Guest Editorial: Bioelectrochemistry and Electroanalytical Chemistry in France. Electroanalysis, 2013, 25, 585-585.	2.9	0
404	A poly(pyrrole opper(II) deuteroporphyrin) modified electrode. Journal of Porphyrins and Phthalocyanines, 1998, 2, 39-43.	0.8	0
405	(Invited) Electroactive Redox Polymers, Redox Glyconanoparticles and Supramolecular Assemblies Based on Nanotubes for Bioelectrochemical Applications. ECS Meeting Abstracts, 2020, MA2020-01, 2786-2786.	0.0	0
406	Recent Advances in Electrochemical and Photochemical Transduction Strategies for Immunosensors Based on Electropolymerized Films. , 2005, , 165-173.		0
407	[Not Available]. Talanta, 2001, 55, 879-80.	5.5	0
408	(Keynote) Bioelectrocatalytic Systems Based on Microcapsules, Glyconanoparticles and Microcavities. ECS Meeting Abstracts, 2022, MA2022-01, 2079-2079.	0.0	0