Pierre Savagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Most Common VHL Point Mutation R167Q in Hereditary VHL Disease Interferes with Cell Plasticity Regulation. Cancers, 2021, 13, 3897.	3.7	4
2	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
3	New insights into the role of <scp>EMT</scp> in tumor immune escape. Molecular Oncology, 2017, 11, 824-846.	4.6	332
4	Epithelial–Mesenchymal Transitions. Current Topics in Developmental Biology, 2015, 112, 273-300.	2.2	132
5	Slug Controls Stem/Progenitor Cell Growth Dynamics during Mammary Gland Morphogenesis. PLoS ONE, 2012, 7, e53498.	2.5	85
6	Snail Family Regulation and Epithelial Mesenchymal Transitions in Breast Cancer Progression. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 135-147.	2.7	205
7	Epithelial-Mesenchymal Transition. American Journal of Pathology, 2009, 174, 1588-1593.	3.8	461
8	Transition épithélio-mésenchymateuse et réparation des blessures cutanées. Bulletin De L'Academie Nationale De Medecine, 2009, 193, 1981-1992.	0.0	2
9	Erk5 Controls Slug Expression and Keratinocyte Activation during Wound Healing. Molecular Biology of the Cell, 2008, 19, 4738-4749.	2.1	136
10	Snail and Slug Play Distinct Roles during Breast Carcinoma Progression. Clinical Cancer Research, 2006, 12, 5395-5402.	7.0	230
11	Developmental transcription factor slug is required for effective reâ€epithelialization by adult keratinocytes. Journal of Cellular Physiology, 2005, 202, 858-866.	4.1	213
12	Rise and Fall of Epithelial Phenotype. , 2005, , .		11
13	Cutaneous Wound Reepithelialization. , 2005, , 111-134.		40
14	Roles of the Transcription Factors Snail and Slug During Mammary Morphogenesis and Breast Carcinoma Progression. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 183-193.	2.7	82
15	Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell, 2004, 117, 927-939.	28.9	3,405
16	Autoregulation of E-cadherin expression by cadherin–cadherin interactions. Journal of Cell Biology, 2003, 163, 847-857.	5.2	453
17	Mouse Snail Family Transcription Repressors Regulate Chondrocyte, Extracellular Matrix, Type II Collagen, and Aggrecan. Journal of Biological Chemistry, 2003, 278, 41862-41870.	3.4	86
18	Leaving the neighborhood: molecular mechanisms involved during epithelialâ€mesenchymal transition. BioEssavs, 2001, 23, 912-923,	2.5	636

#	Article	IF	CITATIONS
19	Slug mRNA is expressed by specific mesodermal derivatives during rodent organogenesis. , 1998, 213, 182-187.		41
20	The Zinc-Finger Protein Slug Causes Desmosome Dissociation, an Initial and Necessary Step for Growth Factor–induced Epithelial–Mesenchymal Transition. Journal of Cell Biology, 1997, 137, 1403-1419.	5.2	473
21	Localization of a neural crest transcription factor, Slug, to mouse Chromosome 16 and human Chromosome 8. Mammalian Genome, 1997, 8, 872-873.	2.2	13
22	Modulations of the epithelial phenotype during embryogenesis and cancer progression. Cancer Treatment and Research, 1994, 71, 229-249.	0.5	55
23	The embryonic thymus produces chemotactic peptides involved in the homing of hemopoietic precursors. Cell, 1986, 44, 781-790.	28.9	84