List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combustion and Flame, 2009, 156, 2093-2105.	5.2	471
2	A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures. Progress in Energy and Combustion Science, 2018, 68, 197-267.	31.2	329
3	Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combustion and Flame, 2008, 152, 507-528.	5.2	284
4	An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combustion and Flame, 2015, 162, 296-314.	5.2	270
5	Laminar burning velocity of gasolines with addition of ethanol. Fuel, 2014, 115, 162-169.	6.4	248
6	Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides. Energy & Fuels, 2018, 32, 10202-10217.	5.1	220
7	Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. Fuel, 2013, 112, 355-365.	6.4	218
8	An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proceedings of the Combustion Institute, 2021, 38, 2163-2174.	3.9	210
9	Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel, 2011, 90, 2773-2781.	6.4	202
10	Measurements of Laminar Flame Velocity for Components of Natural Gas. Energy & Fuels, 2011, 25, 3875-3884.	5.1	181
11	Dioxin levels in wood combustion—a review. Biomass and Bioenergy, 2004, 26, 115-145.	5.7	168
12	The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2. Combustion and Flame, 2007, 149, 409-417.	5.2	161
13	Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures. Fuel, 2019, 257, 116059.	6.4	151
14	The effect of elevated pressures on the laminar burning velocity of methane + air mixtures. Combustion and Flame, 2013, 160, 1627-1635.	5.2	149
15	Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures. Combustion and Flame, 2020, 221, 270-287.	5.2	141
16	Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combustion and Flame, 2012, 159, 120-129.	5.2	119
17	Laminar burning velocities of primary reference fuels and simple alcohols. Fuel, 2014, 115, 32-40.	6.4	116
18	Yet another kinetic mechanism for hydrogen combustion. Combustion and Flame, 2019, 203, 14-22.	5.2	116

#	Article	IF	CITATIONS
19	Kinetic modeling of the decomposition and flames of hydrazine. Combustion and Flame, 2001, 124, 106-126.	5.2	115
20	Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane+air flames. Experimental Thermal and Fluid Science, 2007, 31, 437-444.	2.7	115
21	The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism. Combustion and Flame, 2015, 162, 1884-1898.	5.2	110
22	Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame. Combustion and Flame, 2015, 162, 2045-2058.	5.2	107
23	MEASUREMENT OF ADIABATIC BURNING VELOCITY IN METHANE-OXYGEN-NITROGEN MIXTURES. Combustion Science and Technology, 2001, 172, 81-96.	2.3	102
24	The temperature dependence of the laminar burning velocity of ethanol flames. Proceedings of the Combustion Institute, 2011, 33, 1011-1019.	3.9	99
25	Effects of temperature and composition on the laminar burning velocity of CH4+ H2+ O2+ N2 flames. Fuel, 2010, 89, 114-121.	6.4	98
26	Experimental Uncertainties of the Heat Flux Method for Measuring Burning Velocities. Combustion Science and Technology, 2016, 188, 853-894.	2.3	95
27	Kinetic Modeling of the Thermal Decomposition of Ammonia. Combustion Science and Technology, 2000, 152, 23-37.	2.3	91
28	The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane. Fuel, 2017, 189, 369-376.	6.4	87
29	Structure of premixed ammoniaÂ+Âair flames at atmospheric pressure: Laser diagnostics and kinetic modeling. Combustion and Flame, 2016, 163, 370-381.	5.2	83
30	The temperature dependence of the laminar burning velocity and superadiabatic flame temperature phenomenon for NH3/air flames. Combustion and Flame, 2020, 217, 314-320.	5.2	81
31	Experimental and modeling study of laminar burning velocity of biomass derived gases/air mixtures. International Journal of Hydrogen Energy, 2011, 36, 3769-3777.	7.1	73
32	NO formation rates for hydrogen combustion in stirred reactors. Fuel, 2001, 80, 49-65.	6.4	67
33	Measurement of propagation speeds in adiabatic cellular premixed flames of CH4+O2+CO2. Experimental Thermal and Fluid Science, 2005, 29, 901-907.	2.7	67
34	Temperature Dependence of the Laminar Burning Velocity of Methanol Flames. Energy & Fuels, 2012, 26, 1557-1564.	5.1	66
35	A POSSIBLE NEW ROUTE FOR NO FORMATION VIAN2H3. Combustion Science and Technology, 2001, 168, 1-46.	2.3	65
36	The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames. Proceedings of the Combustion Institute, 2009, 32, 1237-1244.	3.9	63

#	Article	IF	CITATIONS
37	Validation and analysis of detailed kinetic models for ethylene combustion. Energy, 2012, 43, 19-29.	8.8	63
38	On the role of excited species in hydrogen combustion. Combustion and Flame, 2015, 162, 3755-3772.	5.2	63
39	Laminar Burning Velocities of Diluted Hydrogenâ^'Oxygenâ^'Nitrogen Mixtures. Energy & Fuels, 2007, 21, 1977-1981.	5.1	58
40	Laminar burning velocity of lean H2–CO mixtures at elevated pressure using the heat flux method. International Journal of Hydrogen Energy, 2014, 39, 1485-1498.	7.1	58
41	Formation and consumption of NO in H2+O2+N2 flames doped with NO or NH3 at atmospheric pressure. Combustion and Flame, 2010, 157, 556-565.	5.2	57
42	Laminar burning velocities of three C3H6O isomers at atmospheric pressure. Fuel, 2010, 89, 2864-2872.	6.4	57
43	Parametrization of the temperature dependence of laminar burning velocity for methane and ethane flames. Fuel, 2019, 239, 1028-1037.	6.4	57
44	An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames. Combustion and Flame, 2021, 228, 13-28.	5.2	56
45	PROBE SAMPLING MEASUREMENTS AND MODELING OF NITRIC OXIDE FORMATION IN METHANE-AIR FLAMES. Combustion Science and Technology, 2001, 169, 127-153.	2.3	51
46	The effect of temperature on the adiabatic laminar burning velocities of CH4â^'air and H2â^'air flames. Fuel, 2010, 89, 2211-2216.	6.4	51
47	Measurements of NO concentration in NH3-doped CH4+air flames using saturated laser-induced fluorescence and probe sampling. Combustion and Flame, 2013, 160, 40-46.	5.2	50
48	Temperature-dependent rate constant for the reaction NNH + O → NH + NO. Combustion and Flame, 2001, 125, 1258-1264.	5.2	49
49	Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole. Combustion and Flame, 2018, 189, 325-336.	5.2	49
50	Measurement of propagation speeds in adiabatic flat and cellular premixed flames of C2H6+O2+CO2. Combustion and Flame, 2004, 136, 371-376.	5.2	46
51	A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism. Fuel Communications, 2022, 10, 100051.	5.2	46
52	Laminar burning velocity of acetic acid + air flames. Combustion and Flame, 2016, 170, 12-29.	5.2	45
53	Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate. Proceedings of the Combustion Institute, 2019, 37, 419-428.	3.9	45
54	Surrogate compounds for dioxins in incineration. A review. Waste Management, 2005, 25, 755-765.	7.4	44

#	Article	IF	CITATIONS
55	Onset of cellular flame instability in adiabatic CH4/O2/CO2 and CH4/air laminar premixed flames stabilized on a flat-flame burner. Combustion and Flame, 2013, 160, 1276-1286.	5.2	44
56	Experimental and modelling study of the effect of elevated pressure on ethane and propane flames. Fuel, 2016, 166, 410-418.	6.4	44
57	The new route forming NO via NNH. Combustion and Flame, 2000, 121, 548-550.	5.2	43
58	Adiabatic laminar burning velocities of CH4+H2+air flames at low pressures. Fuel, 2010, 89, 1392-1396.	6.4	43
59	Laminar Burning Velocities of Dimethyl Carbonate with Air. Energy & amp; Fuels, 2013, 27, 5513-5517.	5.1	42
60	Experimental and modeling study of the effect of elevated pressure on lean high-hydrogen syngas flames. Proceedings of the Combustion Institute, 2015, 35, 655-662.	3.9	42
61	Nitric oxide formation in premixed flames of H2+CO+CO2 and air. Proceedings of the Combustion Institute, 2002, 29, 2171-2177.	3.9	40
62	Laminar burning velocities of n-decane and binary kerosene surrogate mixture. Fuel, 2017, 187, 429-434.	6.4	39
63	Numerical Analysis of the Impact of Water Injection on Combustion and Thermodynamics in a Gasoline Engine Using Detailed Chemistry. SAE International Journal of Engines, 0, 11, 1151-1166.	0.4	39
64	Comparative Effect of Ammonia Addition on the Laminar Burning Velocities of Methane, <i>n</i> -Heptane, and Iso-octane. Energy & Fuels, 2021, 35, 7156-7168.	5.1	39
65	Measurement of adiabatic burning velocity in ethane–oxygen–nitrogen and in ethane–oxygen–argon mixtures. Experimental Thermal and Fluid Science, 2003, 27, 379-384.	2.7	38
66	The effect of NO and NO2 on the partial oxidation of methane: experiments and modeling. Proceedings of the Combustion Institute, 2005, 30, 1093-1100.	3.9	38
67	On the relative importance of different routes forming NO in hydrogen flames. Combustion and Flame, 2003, 134, 421-424.	5.2	37
68	Experimental and modelling study of 1CH2 in premixed very rich methane flames. Combustion and Flame, 2016, 171, 198-210.	5.2	37
69	The pseudo-catalytic promotion of nitric oxide oxidation by ethane at low temperatures. Combustion and Flame, 2005, 141, 191-199.	5.2	36
70	Probe sampling measurements and modeling of nitric oxide formation in ethane+air flames. Fuel, 2007, 86, 98-105.	6.4	36
71	An experimental and kinetic study of propanal oxidation. Combustion and Flame, 2018, 197, 11-21.	5.2	35
72	Investigation of influence of detailed chemical kinetics mechanisms for hydrogen on supersonic combustion using large eddy simulation. International Journal of Hydrogen Energy, 2019, 44, 5007-5019.	7.1	35

#	Article	IF	CITATIONS
73	EXPERIMENTAL STUDY OF ADIABATIC CELLULAR PREMIXED FLAMES OF METHANE (ETHANE,) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /	Ovgrlock 10 T
74	NONCATALYTIC PARTIAL OXIDATION OF METHANE INTO SYNGAS OVER A WIDE TEMPERATURE RANGE. Combustion Science and Technology, 2004, 176, 1093-1116.	2.3	33
75	To Better Understand the Formation of Short-Chain Acids in Combustion Systems. Combustion Science and Technology, 2007, 180, 343-370.	2.3	33
76	The effects of dilution with nitrogen and steam on the laminar burning velocity of methanol at room and elevated temperatures. Fuel, 2013, 105, 732-738.	6.4	33
77	Laminar premixed flat non-stretched lean flames of hydrogen in air. Combustion and Flame, 2015, 162, 4063-4074.	5.2	33
78	Laminar burning velocity of diacetylÂ+Âair flames. Further assessment of combustion chemistry of ketene. Combustion and Flame, 2017, 178, 97-110.	5.2	33
79	Kinetic Modeling of NO <i></i> Formation and Consumption during Methanol and Ethanol Oxidation. Combustion Science and Technology, 2019, 191, 1627-1659.	2.3	33
80	Experimental and kinetic modeling study of NO formation in premixed CH4+O2+N2 flames. Combustion and Flame, 2021, 223, 349-360.	5.2	33
81	Insights into nitromethane combustion from detailed kinetic modeling – Pyrolysis experiments in jet-stirred and flow reactors. Fuel, 2020, 261, 116349.	6.4	32
82	Prompt NO formation in flames: The influence of NCN thermochemistry. Proceedings of the Combustion Institute, 2013, 34, 657-666.	3.9	31
83	Three-dimensional computational fluid dynamics engine knock prediction and evaluation based on detailed chemistry and detonation theory. International Journal of Engine Research, 2018, 19, 33-44.	2.3	31
84	Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames. Combustion and Flame, 2018, 194, 28-36.	5.2	30
85	Photofragmentation laser-induced fluorescence imaging in premixed flames. Combustion and Flame, 2011, 158, 1908-1919.	5.2	29
86	The differentiated effect of NO and NO2 in promoting methane oxidation. Proceedings of the Combustion Institute, 2011, 33, 441-447.	3.9	29
87	Formation and destruction of nitric oxide in methane flames doped with NO at atmospheric pressure. Proceedings of the Combustion Institute, 2009, 32, 327-334.	3.9	28
88	Laminar burning velocity of nitromethaneÂ+Âair flames: A comparison of flat and spherical flames. Combustion and Flame, 2015, 162, 3803-3809.	5.2	27
89	The effects of enrichment by H2 on propagation speeds in adiabatic flat and cellular premixed flames of CH4+O2+CO2. Fuel, 2008, 87, 2866-2870.	6.4	26
90	2D effects in laminar premixed flames stabilized on a flat flame burner. Experimental Thermal and Fluid Science, 2013, 47, 213-223.	2.7	25

#	Article	IF	CITATIONS
91	A Systematically Updated Detailed Kinetic Model for CH ₂ O and CH ₃ OH Combustion. Energy & Fuels, 2016, 30, 6709-6726.	5.1	25
92	Modeling the formation of precursors of dioxins during combustion of woody fuel volatiles. Fuel, 2005, 84, 323-334.	6.4	24
93	Laminar burning velocities of acetone in air at room and elevated temperatures. Fuel, 2013, 105, 496-502.	6.4	24
94	The temperature dependence of the laminar burning velocities of methyl formate + air flames. Fuel, 2015, 157, 162-170.	6.4	24
95	An experimental and kinetic modeling study on nitric oxide formation in premixed C3 alcohols flames. Proceedings of the Combustion Institute, 2021, 38, 805-812.	3.9	24
96	Kinetics of premixed acetaldehyde + air flames. Proceedings of the Combustion Institute, 2015, 35, 499-506.	3.9	23
97	An experimental and modeling study of nitromethane + O 2 + N 2 ignition in a shock tube. Fuel, 2016, 186, 629-638.	6.4	23
98	Mechanism and Rate Constants of the CH ₃ + CH ₂ CO Reaction: A Theoretical Study. International Journal of Chemical Kinetics, 2018, 50, 273-284.	1.6	23
99	Over-rich combustion of CH4, C2H6, and C3H8 +air premixed flames investigated by the heat flux method and kinetic modeling. Combustion and Flame, 2019, 210, 339-349.	5.2	23
100	The effects of composition on the burning velocity and NO formation in premixed flames of C2H4+O2+N2. Experimental Thermal and Fluid Science, 2008, 32, 1412-1420.	2.7	22
101	OH*-chemiluminescence during autoignition of hydrogen with air in a pressurised turbulent flow reactor. International Journal of Hydrogen Energy, 2014, 39, 12166-12181.	7.1	22
102	PROBE SAMPLING MEASUREMENTS OF NO IN CH4+O2+N2FLAMES DOPED WITH NH3. Combustion Science and Technology, 2006, 178, 1143-1164.	2.3	21
103	Kinetics and mechanism of chemical reactions in the H2/O2/N2 flame at atmospheric pressure. Kinetics and Catalysis, 2009, 50, 156-161.	1.0	21
104	Systematic Reduction of Detailed Chemical Reaction Mechanisms for Engine Applications. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	1.1	21
105	Experimental studies of nitromethane flames and evaluation of kinetic mechanisms. Combustion and Flame, 2018, 190, 327-336.	5.2	21
106	Laminar burning velocities of methylcyclohexane + air flames at room and elevated temperatures: A comparative study. Combustion and Flame, 2018, 196, 99-107.	5.2	21
107	Experimental Study and a Short Kinetic Model for High-Temperature Oxidation of Methyl Methacrylate. Combustion Science and Technology, 2019, 191, 1789-1814.	2.3	21
108	Laminar burning velocities of benzene + air flames at room and elevated temperatures. Fuel, 2016, 175, 302-309.	6.4	20

#	Article	IF	CITATIONS
109	Experimental and modeling study of nitric oxide formation in premixed methanolÂ+Âair flames. Combustion and Flame, 2020, 213, 322-330.	5.2	20
110	Combustion of propanol isomers: Experimental and kinetic modeling study. Combustion and Flame, 2020, 218, 189-204.	5.2	20
111	Kinetic Modeling of Nitrogen Oxides Decomposition at Flame Temperatures. Combustion Science and Technology, 1999, 149, 53-78.	2.3	19
112	Quantitative HCN measurements in CH4/N2O/O2/N2 flames using mid-infrared polarization spectroscopy. Combustion and Flame, 2011, 158, 1898-1904.	5.2	19
113	Laminar burning velocities of rich near-limiting flames of hydrogen. International Journal of Hydrogen Energy, 2014, 39, 1874-1881.	7.1	19
114	Performance of methanol kinetic mechanisms at oxy-fuel conditions. Combustion and Flame, 2015, 162, 1719-1728.	5.2	19
115	Role of HOCO Chemistry in Syngas Combustion. Energy & Fuels, 2016, 30, 2443-2457.	5.1	19
116	Comparative analysis of detailed and reduced kinetic models for CH4 + H2 combustion. Fuel, 2019, 246, 244-258.	6.4	19
117	Gasoline engine performance simulation of water injection and low-pressure exhaust gas recirculation using tabulated chemistry. International Journal of Engine Research, 2020, 21, 1857-1877.	2.3	19
118	Nitrous oxide conversion in laminar premixed flames of CH4+O2+Ar. Proceedings of the Combustion Institute, 2009, 32, 319-326.	3.9	18
119	Accurate measurements of laminar burning velocity using the Heat Flux method and thermographic phosphor technique. Proceedings of the Combustion Institute, 2011, 33, 939-946.	3.9	18
120	The Effects of Enrichment by Carbon Monoxide on Adiabatic Burning Velocity and Nitric Oxide Formation in Methane Flames. Combustion Science and Technology, 2008, 181, 117-135.	2.3	17
121	Strategy for improved NH 2 detection in combustion environments using an Alexandrite laser. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 184, 235-242.	3.9	17
122	Temperature dependence of the laminar burning velocity for n-heptane and iso-octane/air flames. Fuel, 2020, 276, 118007.	6.4	17
123	Formation of NO and NH in NH3-doped CH4 + N2 + O2 flame: Experiments and modelling. Combustion Flame, 2018, 194, 278-284.	and 5.2	16
124	Experimental and modeling study of laminar burning velocities and nitric oxide formation in premixed ethylene/air flames. Proceedings of the Combustion Institute, 2021, 38, 395-404.	3.9	16
125	Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Model. , 0, , .		14
126	Skeletal Kinetic Mechanism Generation and Uncertainty Analysis for Combustion of Iso-octane at High Temperatures. Energy & Fuels, 2018, 32, 3842-3850.	5.1	14

#	Article	IF	CITATIONS
127	Multi-objective optimization of water injection in spark-ignition engines using the stochastic reactor model with tabulated chemistry. International Journal of Engine Research, 2019, 20, 1089-1100.	2.3	14
128	Effect of natural gas composition on the laminar burning velocities at elevated temperatures. Fuel, 2019, 253, 904-909.	6.4	14
129	Laminar burning velocities of methaneÂ+Âformic acidÂ+Âair flames: Experimental and modeling study. Combustion and Flame, 2021, 225, 65-73.	5.2	14
130	Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging. Combustion and Flame, 2013, 160, 1033-1043.	5.2	13
131	Numerical Simulations of Flat Laminar Premixed Methane-Air Flames at Elevated Pressure. Combustion Science and Technology, 2014, 186, 1447-1459.	2.3	13
132	Chemical insights into the larger sooting tendency of 2-methyl-2-butene compared to n-pentane. Combustion and Flame, 2019, 208, 182-197.	5.2	13
133	Revisiting diacetyl and acetic acid flames: The role of the keteneÂ+ÂOH reaction. Combustion and Flame, 2020, 218, 28-41.	5.2	13
134	Oxy-fuel Combustion of Ethanol in Premixed Flames. Energy & amp; Fuels, 2012, 26, 4269-4276.	5.1	12
135	Mechanism and rate constants of the CH 2 + CH 2 CO reactions in triplet and singlet states: A theoretical study. Journal of Computational Chemistry, 2019, 40, 387-399.	3.3	12
136	The influence of ammonia on the laminar burning velocities of methylcyclohexane and toluene: An experimental and kinetic modeling study. Combustion and Flame, 2022, 237, 111839.	5.2	12
137	High-temperature oxidation of acetylene by N2O at high Ar dilution conditions and in laminar premixed C2H2 + O2 + N2 flames. Combustion and Flame, 2022, 238, 111924.	5.2	12
138	Methyl-3-hexenoate combustion chemistry: Experimental study and numerical kinetic simulation. Combustion and Flame, 2020, 222, 170-180.	5.2	11
139	Large eddy simulation of auto-ignition kernel development of transient methane jet in hot co-flow. Combustion and Flame, 2020, 215, 342-351.	5.2	11
140	Laminar burning velocity measurements of ethanol+air and methanol+air flames at atmospheric and elevated pressures using a new Heat Flux setup. Combustion and Flame, 2021, 230, 111435.	5.2	11
141	Formation and Destruction of Nitric Oxide in NO Doped Premixed Flames of C ₂ H ₄ , C ₂ H ₆ , and C ₃ H ₈ at Atmospheric Pressure. Energy & Fuels, 2010, 24, 4833-4840.	5.1	10
142	Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames. Proceedings of the Combustion Institute, 2017, 36, 4533-4540.	3.9	10
143	Experimental and modelling study of laminar burning velocity of aqueous ethanol. Fuel, 2019, 257, 116069.	6.4	10
144	Experimental and kinetic modeling study of para-xylene chemistry in laminar premixed flames. Fuel, 2019, 239, 814-829.	6.4	10

#	Article	IF	CITATIONS
145	Data Consistency of the Burning Velocity Measurements Using the Heat Flux Method: Syngas Flames. Energy & Fuels, 2020, 34, 3725-3742.	5.1	10
146	Experimental study of extinction of nonadiabatic counterflow premixed flames. Combustion and Flame, 1996, 105, 308-320.	5.2	9
147	The Comparative and Combined Effects of Nitric Oxide and Higher Alkanes in Sensitizing Methane Oxidation. Combustion Science and Technology, 2012, 184, 114-132.	2.3	9
148	Modeling Ozone Decomposition Flames. Energy & amp; Fuels, 2013, 27, 501-506.	5.1	9
149	Hexadecane mechanisms: Comparison of hand-generated and automatically generated with pathways. Fuel, 2014, 115, 132-144.	6.4	9
150	Autoignition of Dimethyl Ether and Air in an Optical Flow-Reactor. Energy & Fuels, 2014, 28, 4130-4138.	5.1	9
151	Combustion chemistry of methoxymethanol. Part II: Laminar flames of methanol+formaldehyde fuel mixtures. Combustion and Flame, 2021, 229, 111411.	5.2	9
152	Detailed Chemical Kinetic Study of Acetaldehyde Oxidation and Its Interaction with NO _{<i>x</i>} . Energy & Fuels, 2021, 35, 14963-14983.	5.1	9
153	Uniqueness and similarity in flame propagation of pre-dissociated NH3Â+Âair and NH3Â+ÂH2Â+Âair mixtures: An experimental and modelling study. Fuel, 2022, 327, 125159.	6.4	9
154	Laminar burning velocities of surrogate components blended with ethanol. Combustion and Flame, 2019, 209, 389-393.	5.2	8
155	A Comparison Between the Combustion of Natural Gas and Partially Reformed Natural Gas in an Atmospheric Lean Premixed Turbine-Type Combustor. Combustion Science and Technology, 2008, 180, 1478-1501.	2.3	7
156	On the role of C2O radicals in the prompt-NO mechanism. Combustion, Explosion and Shock Waves, 2008, 44, 497-501.	0.8	6
157	Measurements of the laminar burning velocities and NO concentrations in neat and blended ethanol and n-heptane flames. Fuel, 2021, 288, 119585.	6.4	6
158	Intracavity Laser Absorption Spectroscopy Study of HCO Radicals during Methane to Hydrogen Conversion in Very Rich Flames. Energy & Fuels, 2015, 29, 6146-6154.	5.1	5
159	1-hexene autoignition control by prior reaction with ozone. Fuel Processing Technology, 2016, 145, 90-95.	7.2	5
160	Flame Studies of Oxygenates. Green Energy and Technology, 2013, , 231-280.	0.6	4
161	Fiber Laser Intracavity Spectroscopy of hot water for temperature and concentration measurements. Applied Physics B: Lasers and Optics, 2015, 121, 345-351.	2.2	4
162	Experimental and Kinetic Modeling Study of Laminar Burning Velocities of Cyclopentanone and Its Binary Mixtures with Ethanol and n-Propanol. Energy & Fuels, 2020, 34, 11408-11416.	5.1	4

#	Article	IF	CITATIONS
163	High-temperature oxidation of propanol isomers in the mixtures with N2O at high Ar dilution conditions. Fuel, 2021, 287, 119499.	6.4	4
164	Laminar burning velocities of propionic acidÂ+Âair flames: Experimental, modeling and data consistency study. Combustion and Flame, 2021, 230, 111431.	5.2	4
165	Model of Cellular Instability of Flames of Ternary Mixtures. Combustion, Explosion and Shock Waves, 2005, 41, 496-503.	0.8	3
166	NCN concentration and interfering absorption by CH2O, NH and OH in low pressure methane/air flames with and without N2O. Combustion and Flame, 2011, 158, 2090-2104.	5.2	3
167	A projection procedure to obtain adiabatic flames from non-adiabatic flames using heat flux method. Proceedings of the Combustion Institute, 2021, 38, 2143-2151.	3.9	3
168	Oxidation kinetics of methyl crotonate: A comprehensive modeling and experimental study. Combustion and Flame, 2021, 229, 111409.	5.2	3
169	From electronic structure to combustion model application for acrolein chemistry part I: AcroleinÂ+ÂH reactions and related chemistry. Combustion and Flame, 2022, 240, 111825.	5.2	3
170	Experimental and modeling study of NO formation in methyl acetateÂ+Âair flames. Combustion and Flame, 2022, 242, 112213.	5.2	3
171	Laminar Flame Velocity of Components of Natural Gas. , 2011, , .		2
172	Comparison of Kinetic Mechanisms for Numerical Simulation of Methanol Combustion in DICI Heavy-Duty Engine. , 0, , .		2
173	Radical concentrations and temperature oscillations in cool flame oxidation of butane. Reaction Kinetics and Catalysis Letters, 1990, 41, 265-270.	0.6	1
174	Experimental Study of Local Axial Mixing in a Pilot-Scale Cold Burner. Industrial & amp; Engineering Chemistry Research, 2011, 50, 1070-1078.	3.7	0
175	Development of skeletal chemical mechanisms with coupled species sensitivity analysis method. Journal of Zhejiang University: Science A, 2019, 20, 908-917.	2.4	0