Aurea Navarro-Sabate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6361031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends in Biochemical Sciences, 2001, 26, 30-35.	7.5	301
2	6-Phosphofructo-2-kinase (pfkfb3) Gene Promoter Contains Hypoxia-inducible Factor-1 Binding Sites Necessary for Transactivation in Response to Hypoxia. Journal of Biological Chemistry, 2004, 279, 53562-53570.	3.4	213
3	<scp>TGF</scp> â€Î²1 targets Smad, p38 <scp>MAPK</scp> , and <scp>PI</scp> 3K/Akt signaling pathways to induce <scp>PFKFB</scp> 3 gene expression and glycolysis in glioblastoma cells. FEBS Journal, 2017, 284, 3437-3454.	4.7	116
4	PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Letters, 2006, 580, 3308-3314.	2.8	97
5	Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Frontiers in Oncology, 2018, 8, 331.	2.8	83
6	Cooperation of Adenosine with Macrophage Toll-4 Receptor Agonists Leads to Increased Glycolytic Flux through the Enhanced Expression of PFKFB3 Gene. Journal of Biological Chemistry, 2011, 286, 19247-19258.	3.4	66
7	TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells. Radiotherapy and Oncology, 2011, 101, 132-139.	0.6	64
8	PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochemical Journal, 2013, 452, 531-543.	3.7	64
9	Akt-dependent Activation of the Heart 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase (PFKFB2) Isoenzyme by Amino Acids. Journal of Biological Chemistry, 2013, 288, 10640-10651.	3.4	63
10	TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer. Journal of Biological Chemistry, 2016, 291, 26291-26303.	3.4	62
11	The potential utility of PFKFB3 as a therapeutic target. Expert Opinion on Therapeutic Targets, 2018, 22, 659-674.	3.4	54
12	Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochemical Journal, 2012, 442, 345-356.	3.7	42
13	The human ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFB3): promoter characterization and genomic structure. Gene, 2001, 264, 131-138.	2.2	37
14	<i>Pfkfb3</i> is transcriptionally upregulated in diabetic mouse liver through proliferative signals. FEBS Journal, 2009, 276, 4555-4568.	4.7	36
15	Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1589, 89-92.	4.1	35
16	Regulation of ubiquitous 6-phosphofructo-2-kinase by the ubiquitin-proteasome proteolytic pathway during myogenic C2C12 cell differentiation. FEBS Letters, 2003, 550, 23-29.	2.8	30
17	Activation of AMP-dependent protein kinase by hypoxia and hypothermia in the liver of frog Rana perezi. Cryobiology, 2004, 49, 190-194.	0.7	23
18	Switches in 6-phosphofructo-2-kinase isoenzyme expression during rat sperm maturation. Biochemical and Biophysical Research Communications, 2009, 387, 330-335.	2.1	19

#	Article	IF	CITATIONS
19	PI3K–Akt signaling controls PFKFB3 expression during human T-lymphocyte activation. Molecular and Cellular Biochemistry, 2018, 448, 187-197.	3.1	19
20	Overexpression of ubiquitous 6-phosphofructo-2-kinase in the liver of transgenic mice results in weight gain. Biochemical and Biophysical Research Communications, 2008, 365, 291-297.	2.1	18
21	Sertoli-secreted FGF-2 induces PFKFB4 isozyme expression in mouse spermatogenic cells by activation of the MEK/ERK/CREB pathway. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E695-E707.	3.5	16
22	Akt mediates <scp>TIGAR</scp> induction in HeLa cells following <scp>PFKFB</scp> 3 inhibition. FEBS Letters, 2016, 590, 2915-2926.	2.8	16
23	Mediators of rat ischemic hepatic preconditioning after cold preservation identified by microarray analysis. Liver Transplantation, 2006, 12, 1615-1625.	2.4	14
24	Excess of Nonsynonymous Polymorphism at Acph-1 in Different Gene Arrangements of Drosophila subobscura. Molecular Biology and Evolution, 2003, 20, 1833-1843.	8.9	10
25	Specific expression ofpfkfb4gene in spermatogonia germ cells and analysis of its 5′-flanking region. FEBS Letters, 2005, 579, 357-362.	2.8	10
26	Characterization of a new liver- and kidney-specific pfkfb3 isozyme that is downregulated by cell proliferation and dedifferentiation. Biochemical and Biophysical Research Communications, 2008, 367, 748-754.	2.1	10
27	Re: Prognostic Significance of a Short Sequence Insertion in the MCL-1 Promoter in Chronic Lymphocytic Leukemia. Journal of the National Cancer Institute, 2005, 97, 1090-1091.	6.3	5
28	TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Is Upregulated in Lymphocytes Stimulated with Concanavalin A. International Journal of Molecular Sciences, 2021, 22, 7436.	4.1	5
29	The Expression of TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Can Be Controlled by the Antioxidant Orchestrator NRF2 in Human Carcinoma Cells. International Journal of Molecular Sciences, 2022, 23, 1905.	4.1	4
30	The Acid Phosphatase-1 Gene Region in the Drosophila Species of the Subobscura Cluster. Hereditas, 2004, 130, 65-75.	1.4	3