Marcos R V Lanza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6360492/publications.pdf Version: 2024-02-01

		71102	118850
172	5,318	41	62
papers	citations	h-index	g-index
173	173	173	4910
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline‑carbon nanotubes. Food Chemistry, 2012, 135, 873-879.	8.2	207
2	A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon, 2011, 49, 2842-2851.	10.3	161
3	Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support. Carbon, 2013, 61, 236-244.	10.3	149
4	Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene. Electrochimica Acta, 2015, 162, 263-270.	5.2	132
5	Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone. Journal of Electroanalytical Chemistry, 2007, 601, 63-67.	3.8	112
6	Use of Gas Diffusion Electrode for the In Situ Generation of Hydrogen Peroxide in an Electrochemical Flow-By Reactor. Industrial & Engineering Chemistry Research, 2012, 51, 649-654.	3.7	108
7	Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine. Electrochimica Acta, 2013, 104, 12-18.	5.2	101
8	Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Applied Catalysis A: General, 2012, 411-412, 1-6.	4.3	100
9	Evaluation of H2O2 electrogeneration and decolorization of Orange II azo dye using tungsten oxide nanoparticle-modified carbon. Applied Catalysis B: Environmental, 2018, 232, 436-445.	20.2	98
10	Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5. Applied Catalysis A: General, 2016, 517, 161-167.	4.3	90
11	Electrochemical oxidation route of methyl paraben on a boron-doped diamond anode. Electrochimica Acta, 2014, 117, 127-133.	5.2	89
12	In Situ Electrochemical Generation of Hydrogen Peroxide in Alkaline Aqueous Solution by using an Unmodified Gas Diffusion Electrode. ChemElectroChem, 2015, 2, 714-719.	3.4	89
13	Electrochemical and sonoelectrochemical processes applied to amaranth dye degradation. Chemosphere, 2014, 117, 200-207.	8.2	88
14	Catalytic activity of Fe3â^'Cu O4 (0 â‰ജâ‰ଷ0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process. Applied Catalysis B: Environmental, 2016, 180, 434-441.	20.2	87
15	Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: Quinones and azo compounds employed as redox modifiers. Applied Catalysis B: Environmental, 2019, 248, 95-107.	20.2	83
16	Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline. Journal of Electroanalytical Chemistry, 2015, 757, 250-257.	3.8	77
17	Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes. Journal of Hazardous Materials, 2011, 192, 1683-1689.	12.4	74
18	Oxygen reduction reaction catalyzed by É›-MnO2: Influence of the crystalline structure on the reaction mechanism. Electrochimica Acta, 2012, 85, 423-431.	5.2	71

#	Article	IF	CITATIONS
19	Nb 2 O 5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H 2 O 2 electrogeneration. Journal of Catalysis, 2015, 332, 51-61.	6.2	70
20	Degradation of antibiotic ciprofloxacin by different AOP systems using electrochemically generated hydrogen peroxide. Chemosphere, 2020, 247, 125807.	8.2	69
21	Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation–electro-Fenton in a filter-press flow cell. Journal of Electroanalytical Chemistry, 2016, 765, 179-187.	3.8	67
22	Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sensors and Actuators B: Chemical, 2013, 188, 1293-1299.	7.8	66
23	Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode. Electrochimica Acta, 2014, 143, 180-187.	5.2	63
24	Low tungsten content of nanostructured material supported on carbon for the degradation of phenol. Applied Catalysis B: Environmental, 2013, 142-143, 479-486.	20.2	61
25	Carbon-supported MnO2 nanoflowers: Introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation. Electrochimica Acta, 2018, 268, 101-110.	5.2	60
26	Electrosynthesis of methanol from methane: The role of V2O5 in the reaction selectivity for methanol of a TiO2/RuO2/V2O5 gas diffusion electrode. Electrochimica Acta, 2013, 87, 606-610.	5.2	58
27	Electro-Fenton degradation of the food dye amaranth using a gas diffusion electrode modified with cobalt (II) phthalocyanine. Journal of Electroanalytical Chemistry, 2014, 722-723, 46-53.	3.8	55
28	The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes. Electrochimica Acta, 2016, 187, 119-124.	5.2	54
29	The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. Electrochimica Acta, 2014, 139, 1-6.	5.2	52
30	A comparative study of the electrochemical oxidation of the herbicide tebuthiuron using boron-doped diamond electrodes. Chemosphere, 2012, 88, 155-160.	8.2	51
31	Surface and Catalytical effects on Treated Carbon Materials for Hydrogen Peroxide Electrogeneration. Electrocatalysis, 2016, 7, 60-69.	3.0	50
32	Solar-powered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. Electrochimica Acta, 2016, 190, 371-377.	5.2	49
33	Use of a vanadium nanostructured material for hydrogen peroxide electrogeneration. Journal of Electroanalytical Chemistry, 2014, 719, 127-132.	3.8	48
34	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 61-70.	2.9	47
35	Azobenzene-modified oxygen-fed graphite/PTFE electrodes for hydrogen peroxide synthesis. Journal of Applied Electrochemistry, 2007, 37, 527-532.	2.9	46
36	Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration. Electrochimica Acta, 2013, 109, 245-251.	5.2	46

#	Article	IF	CITATIONS
37	A wind-powered BDD electrochemical oxidation process for the removal of herbicides. Journal of Environmental Management, 2015, 158, 36-39.	7.8	46
38	Nanodiamonds stabilized in dihexadecyl phosphate film for electrochemical study and quantification of codeine in biological and pharmaceutical samples. Diamond and Related Materials, 2017, 74, 191-196.	3.9	46
39	Electrogeneration of hydrogen peroxide in gas diffusion electrodes: Application of iron (II) phthalocyanine as a modifier of carbon black. Journal of Electroanalytical Chemistry, 2014, 722-723, 32-37.	3.8	45
40	Cyanide Oxidation from Wastewater in a Flow Electrochemical Reactor. Industrial & Engineering Chemistry Research, 2002, 41, 22-26.	3.7	44
41	Application of electrokinetic soil flushing to four herbicides: A comparison. Chemosphere, 2016, 153, 205-211.	8.2	44
42	Sensor for diuron quantitation based on the P450 biomimetic catalyst nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine. Journal of Electroanalytical Chemistry, 2013, 690, 83-88.	3.8	43
43	Electrochemical removal of Reactive Black 5 azo dye using non-commercial boron-doped diamond film anodes. Electrochimica Acta, 2015, 178, 484-493.	5.2	43
44	Influence of the preparation method and the support on H2O2 electrogeneration using cerium oxide nanoparticles. Electrochimica Acta, 2013, 111, 339-343.	5.2	42
45	Enhanced photoelectrocatalytic performance of TiO2 nanotube array modified with WO3 applied to the degradation of the endocrine disruptor propyl paraben. Journal of Electroanalytical Chemistry, 2017, 802, 33-39.	3.8	42
46	Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review. Current Opinion in Electrochemistry, 2021, 26, 100674.	4.8	42
47	Removal of herbicide 2,4-D using conductive-diamond sono-electrochemical oxidation. Separation and Purification Technology, 2015, 149, 24-30.	7.9	40
48	Removal of pesticide 2,4-D by conductive-diamond photoelectrochemical oxidation. Applied Catalysis B: Environmental, 2016, 180, 733-739.	20.2	40
49	Enhanced electrodegradation of the Sunset Yellow dye in acid media by heterogeneous Photoelectro-Fenton process using Fe3O4 nanoparticles as a catalyst. Journal of Environmental Chemical Engineering, 2020, 8, 103621.	6.7	40
50	Carbon black nanospheres modified with Cu (II)-phthalocyanine for electrochemical determination of Trimethoprim antibiotic. Applied Surface Science, 2019, 470, 555-564.	6.1	39
51	Electrochemical and sonoelectrochemical processes applied to the degradation of the endocrine disruptor methyl paraben. Journal of Applied Electrochemistry, 2014, 44, 1317-1325.	2.9	37
52	Hexagonal-Nb2O5/Anatase-TiO2 mixtures and their applications in the removal of Methylene Blue dye under various conditions. Materials Chemistry and Physics, 2017, 198, 331-340.	4.0	37
53	Degradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material. Applied Catalysis A: General, 2013, 462-463, 256-261.	4.3	36
54	W@Au Nanostructures Modifying Carbon as Materials for Hydrogen Peroxide Electrogeneration. Electrochimica Acta, 2017, 231, 713-720.	5.2	36

#	Article	IF	CITATIONS
55	Electrochemical oxidation of RB-19 dye using a highly BDD/Ti: Proposed pathway and toxicity. Journal of Environmental Chemical Engineering, 2016, 4, 3900-3909.	6.7	35
56	Antibiotic Detection in Urine Using Electrochemical Sensors Based on Vertically Aligned Carbon Nanotubes. Electroanalysis, 2013, 25, 2092-2099.	2.9	34
57	Application and stability of cathodes with manganese dioxide nanoflowers supported on Vulcan by Fenton systems for the degradation of RB5 azo dye. Chemosphere, 2018, 208, 131-138.	8.2	34
58	Electrochemical oxidation of ciprofloxacin in different aqueous matrices using synthesized boron-doped micro and nano-diamond anodes. Environmental Research, 2022, 204, 112027.	7.5	34
59	Electrodeposition of WO3 on Ti substrate and the influence of interfacial oxide layer generated in situ: A photoelectrocatalytic degradation of propyl paraben. Applied Surface Science, 2019, 464, 664-672.	6.1	33
60	Biosensor Based on Electrocodeposition of Carbon Nanotubes/Polypyrrole/Laccase for Neurotransmitter Detection. Electroanalysis, 2013, 25, 394-400.	2.9	31
61	Efficiency study and mechanistic aspects in the Brilliant Green dye degradation using BDD/Ti electrodes. Diamond and Related Materials, 2016, 65, 5-12.	3.9	31
62	Low Pd loadings onto Printex L6: Synthesis, characterization and performance towards H2O2 generation for electrochemical water treatment technologies. Chemosphere, 2020, 259, 127523.	8.2	31
63	A Feasibility Study of the Electro-recycling of Greenhouse Gases: Design and Characterization of a (TiO2/RuO2)/PTFE Gas Diffusion Electrode for the Electrosynthesis of Methanol from Methane. Electrocatalysis, 2010, 1, 224-229.	3.0	30
64	Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide. Catalysis Today, 2017, 280, 192-198.	4.4	29
65	Catalysis of oxygen reduction reaction for H2O2 electrogeneration: The impact of different conductive carbon matrices and their physicochemical properties. Journal of Catalysis, 2020, 392, 56-68.	6.2	29
66	Treatment of Tebuthiuron in synthetic and real wastewater using electrochemical flow-by reactor. Journal of Electroanalytical Chemistry, 2021, 882, 114978.	3.8	28
67	Effect of electrochemically-driven technologies on the treatment of endocrine disruptors in synthetic and real urban wastewater. Electrochimica Acta, 2021, 376, 138034.	5.2	28
68	Electrolytic removal of metals using a flow-through cell with a reticulated vitreous carbon cathode. Journal of the Brazilian Chemical Society, 1997, 8, 487-493.	0.6	27
69	Electrochemical degradation of the insecticide methyl parathion using a boron-doped diamond film anode. Journal of Electroanalytical Chemistry, 2013, 702, 1-7.	3.8	27
70	Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate. Chemosphere, 2014, 117, 596-603.	8.2	27
71	Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2,4-D. Chemical Engineering Journal, 2015, 277, 64-69.	12.7	27
72	Electrochemical sensor highly selective for estradiol valerate determination based on a modified carbon paste with iron tetrapyridinoporphyrazine. Analyst, The, 2008, 133, 1692	3.5	25

5

#	Article	IF	CITATIONS
73	Application of the response surface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction. Journal of Environmental Management, 2013, 118, 32-39.	7.8	25
74	Synthesis and Characterization of ZrO2/C as Electrocatalyst for Oxygen Reduction to H2O2. Electrocatalysis, 2017, 8, 189-195.	3.0	25
75	The oxygen reduction reaction on palladium with low metal loadings: The effects of chlorides on the stability and activity towards hydrogen peroxide. Journal of Catalysis, 2020, 389, 400-408.	6.2	25
76	New operational mode of an electrochemical reactor and its application to the degradation of levofloxacin. Journal of Environmental Chemical Engineering, 2017, 5, 4441-4446.	6.7	24
77	Real-time electrochemical determination of phenolic compounds after benzene oxidation. Journal of Electroanalytical Chemistry, 2012, 672, 34-39.	3.8	23
78	A new sensor architecture based on carbon Printex 6L to the electrochemical determination of ranitidine. Journal of Solid State Electrochemistry, 2016, 20, 2395-2402.	2.5	22
79	Removal of chlorsulfuron and 2,4-D from spiked soil using reversible electrokinetic adsorption barriers. Separation and Purification Technology, 2017, 178, 147-153.	7.9	22
80	Oxygen reduction reaction: Semi-empirical quantum mechanical and electrochemical study of Printex L6 carbon black. Carbon, 2020, 156, 1-9.	10.3	22
81	Flow injection analysis of paracetamol using a biomimetic sensor as a sensitive and selective amperometric detector. Analytical Methods, 2010, 2, 507.	2.7	21
82	The use of dihexadecylphosphate in sensing and biosensing. Sensors and Actuators B: Chemical, 2015, 220, 805-813.	7.8	20
83	A Novel Electrochemical Sensor Based on Printex L6 Carbon Black Carrying CuO/Cu ₂ O Nanoparticles for Propylparaben Determination. Electroanalysis, 2018, 30, 2967-2976.	2.9	20
84	Effects of coupling hybrid processes on the treatment of wastewater containing a commercial mixture of diuron and hexazinone herbicides. Electrochimica Acta, 2019, 328, 135013.	5.2	20
85	Photocatalytic performance of Ti/MMO/ZnO at degradation of levofloxacin: Effect of pH and chloride anions. Journal of Electroanalytical Chemistry, 2021, 880, 114894.	3.8	20
86	Effect of Fe2+ on the degradation of the pesticide profenofos by electrogenerated H2O2. Journal of Electroanalytical Chemistry, 2016, 783, 100-105.	3.8	19
87	Towards the scaleâ€up of electrolysis with diamond anodes: effect of stacking on the electrochemical oxidation of 2,4 D. Journal of Chemical Technology and Biotechnology, 2016, 91, 742-747.	3.2	19
88	Zirconia on Reduced Graphene Oxide Sheets: Synergistic Catalyst with High Selectivity for H ₂ O ₂ Electrogeneration. ChemElectroChem, 2017, 4, 508-513.	3.4	19
89	Simultaneous degradation of hexazinone and diuron using ZrO2-nanostructured gas diffusion electrode. Chemical Engineering Journal, 2018, 351, 650-659.	12.7	19
90	The Role of Mediated Oxidation on the Electro-irradiated Treatment of Amoxicillin and Ampicillin Polluted Wastewater. Catalysts, 2019, 9, 9.	3.5	19

#	Article	IF	CITATIONS
91	Electrocatalysis of Hydrogen Peroxide Generation Using Oxygen-Fed Gas Diffusion Electrodes Made of Carbon Black Modified with Quinone Compounds. Electrocatalysis, 2020, 11, 338-346.	3.0	19
92	Avaliação da degradação do diclofenaco sódico utilizando H2O2/fenton em reator eletroquÃmico. Quimica Nova, 2009, 32, 354-358.	0.3	18
93	Degradation of profenofos in an electrochemical flow reactor using boron-doped diamond anodes. Diamond and Related Materials, 2013, 32, 54-60.	3.9	18
94	Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis. Journal of Environmental Management, 2016, 167, 206-213.	7.8	18
95	Sustainable microwave-assisted hydrothermal synthesis of carbon-supported ZrO2 nanoparticles for H2O2 electrogeneration. Materials Chemistry and Physics, 2021, 267, 124575.	4.0	18
96	Bisphenol-S removal via photoelectro-fenton/H2O2 process using Co-porphyrin/Printex L6 gas diffusion electrode. Separation and Purification Technology, 2022, 285, 120299.	7.9	18
97	Construction and application of an electrochemical sensor for paracetamol determination based on iron tetrapyridinoporphyrazine as a biomimetic catalyst of P450 enzyme. Journal of the Brazilian Chemical Society, 2008, 19, 734-743.	0.6	17
98	Estudo da degradação de ranitidina via H2O2 eletrogerado/Fenton em um reator eletroquÃmico com eletrodos de difusão gasosa. Quimica Nova, 2009, 32, 125-130.	0.3	17
99	Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes. Materials Chemistry and Physics, 2013, 141, 304-309.	4.0	17
100	Electrochemical Degradation of Tartrazine Dye in Aqueous Solution Using a Modified Gas Diffusion Electrode. Journal of the Electrochemical Society, 2014, 161, H438-H442.	2.9	16
101	Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil. Journal of Environmental Management, 2016, 171, 128-132.	7.8	16
102	A Simple Method for the Electrodeposition of WO3 in TiO2 Nanotubes: Influence of the Amount of Tungsten on Photoelectrocatalytic Activity. Electrocatalysis, 2017, 8, 115-121.	3.0	16
103	Rapid separation of postâ€blast explosive residues on glass electrophoresis microchips. Electrophoresis, 2019, 40, 462-468.	2.4	16
104	MASS TRANSPORT PROPERTIES OF A FLOW-THROUGH ELECTROLYTIC REACTOR USING A POROUS ELECTRODE: PERFORMANCE AND FIGURES OF MERIT FOR Pb(II) REMOVAL. Brazilian Journal of Chemical Engineering, 1998, 15, 396-405.	1.3	16
105	Effects of the modification of gas diffusion electrodes by organic redox catalysts for hydrogen peroxide electrosynthesis. Journal of the Brazilian Chemical Society, 2008, 19, 643-650.	0.6	15
106	Degradação eletroquÃmica do cloranfenicol em reator de fluxo. Quimica Nova, 2010, 33, 1088-1092.	0.3	15
107	Development and Evaluation of a Pseudoreference Pt//Ag/AgCl Electrode for Electrochemical Systems. Industrial & Engineering Chemistry Research, 2012, 51, 5367-5371.	3.7	15
108	Removal of algae from biological cultures: a challenge for electrocoagulation?. Journal of Chemical Technology and Biotechnology, 2016, 91, 82-87.	3.2	15

#	Article	IF	CITATIONS
109	Effects of temperature and heating method on the performance of Ti/Ru0.25Ir0.25Ti0.50O2 anodes applied toward Bisphenol S removal. Electrochimica Acta, 2020, 364, 137273.	5.2	15
110	Desenvolvimento e avaliação de eletrodos de difusão gasosa (EDG) para geração de H2O2 in situ e sua aplicação na degradação do corante reativo azul 19. Quimica Nova, 2012, 35, 1961-1966.	0.3	14
111	Degradation of dipyrone in an electrochemical flow-by reactor using anodes of boron-doped diamond (BDD) supported on titanium. Journal of Electroanalytical Chemistry, 2013, 690, 89-95.	3.8	14
112	Doped diamond electrodes on titanium substrates with controlled sp2/sp3 hybridization at different boron levels. Thin Solid Films, 2014, 564, 97-103.	1.8	14
113	Is it worth the use of bipolar electrodes in electrolytic wastewater treatment processes?. Chemical Engineering Journal, 2015, 264, 310-315.	12.7	13
114	Removal of Orange II (OII) dye by simulated solar photoelectro-Fenton and stability of WO2.72/Vulcan XC72 gas diffusion electrode. Chemosphere, 2020, 239, 124670.	8.2	13
115	Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates. Chemosphere, 2021, 271, 129451.	8.2	13
116	Using Palladium and Gold Palladium Nanoparticles Decorated with Molybdenum Oxide for Versatile Hydrogen Peroxide Electroproduction on Graphene Nanoribbons. ACS Applied Materials & Interfaces, 2022, 14, 6777-6793.	8.0	13
117	Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide. Journal of the Brazilian Chemical Society, 2002, 13, 345-351.	0.6	12
118	Photo-Fenton degradation of the insecticide esfenvalerate in aqueous medium using a recirculation flow-through UV photoreactor. Journal of Hazardous Materials, 2011, 198, 370-375.	12.4	12
119	Combination of Cu-Pt-Pd nanoparticles supported on graphene nanoribbons decorating the surface of TiO2 nanotube applied for CO2 photoelectrochemical reduction. Journal of Environmental Chemical Engineering, 2021, 9, 105803.	6.7	12
120	Highly Efficient Electrochemical Production of Hydrogen Peroxide Using the GDE Technology. Industrial & Engineering Chemistry Research, 2022, 61, 10660-10669.	3.7	12
121	Photoelectrochemical removal of 17β-estradiol using a RuO2-graphene electrode. Chemosphere, 2016, 162, 99-104.	8.2	11
122	Electrochemical Degradation of Reactive Blue 19 Dye by Combining Boronâ€Doped Diamond and Reticulated Vitreous Carbon Electrodes. ChemElectroChem, 2019, 6, 3516-3524.	3.4	11
123	Development and Application of a Highly Selective Biomimetic Sensor for Detection of Captopril, an Important Ally in Hypertension Control. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 666-674.	1.1	10
124	Insertion of nanostructured titanates into the pores of an anodised TiO2 nanotube array by mechanically stimulated electrophoretic deposition. Journal of Materials Chemistry C, 2017, 5, 3955-3961.	5.5	10
125	Using black carbon modified with NbMo and NbPd oxide nanoparticles for the improvement of H2O2 electrosynthesis. Journal of Electroanalytical Chemistry, 2020, 877, 114746.	3.8	10
126	Tailoring the ORR selectivity for H ₂ O ₂ electrogeneration by modification of Printex L6 carbon with 1,4-naphthoquinone: a theoretical, experimental and environmental application study. Materials Advances, 2020, 1, 1318-1329.	5.4	10

#	Article	IF	CITATIONS
127	Photoelectrocatalytic treatment of levofloxacin using Ti/MMO/ZnO electrode. Chemosphere, 2021, 284, 131303.	8.2	10
128	Application of a biomimetic sensor based on iron phthalocyanine chloride: 4-methylbenzylidene-camphor detection. Journal of the Brazilian Chemical Society, 2010, 21, 1377-1383.	0.6	9
129	Carbon Modified with Vanadium Nanoparticles for Hydrogen Peroxide Electrogeneration. Electrocatalysis, 2017, 8, 311-320.	3.0	9
130	Morphological and Electrochemical Characterization of Ti/MxTiySnzO2 (M = Ir or Ru) Electrodes Prepared by the Polymeric Precursor Method. Advances in Chemical Engineering and Science, 2016, 06, 364-378.	0.5	9
131	High levofloxacin removal in the treatment of synthetic human urine using Ti/MMO/ZnO photo-electrocatalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107317.	6.7	9
132	Using carbon black modified with Nb2O5 and RuO2 for enhancing selectivity toward H2O2 electrogeneration. Journal of Environmental Chemical Engineering, 2021, 9, 106787.	6.7	9
133	Electrochemical Degradation of Methyl Paraben Using a Boron-Doped Diamond Anode. ECS Transactions, 2012, 43, 111-117.	0.5	8
134	Degradation of Dipyrone by Electrogenerated H2O2Combined with Fe2+Using a Modified Gas Diffusion Electrode. Journal of the Electrochemical Society, 2014, 161, H867-H873.	2.9	8
135	Electrochemical dewatering for the removal of hazardous species from sludge. Journal of Environmental Management, 2019, 233, 768-773.	7.8	8
136	Eletrodegradação de Ponceau 2R utilizando ânodos dimensionalmente estáveis e Ti/Pt. Quimica Nova, 2013, 36, 85-90.	0.3	8
137	Electrochemical Characterization of DSA®-Type Electrodes Using Niobium Substrate. Electrocatalysis, 2010, 1, 129-138.	3.0	7
138	Studies of the Electrochemical Degradation of Acetaminophen Using a Real-Time Biomimetic Sensor. Electroanalysis, 2011, 23, 2616-2621.	2.9	7
139	Electrogeneration Of H2O2 in Acid Medium Using Catalysts Modified with Manganese II Phthalocyanine Supported in Printex 6L Carbon. ECS Transactions, 2012, 43, 103-109.	0.5	7
140	Photoelectrocatalytic degradation of caffeine using bismuth vanadate modified with reduced graphene oxide. Materials Research Bulletin, 2022, 145, 111539.	5.2	7
141	Highly porous seeding-free boron-doped ultrananocrystalline diamond used as high-performance anode for electrochemical removal of carbaryl from water. Chemosphere, 2022, 305, 135497.	8.2	7
142	Oxidação eletroquÃmica do herbicida tebutiuron utilizando eletrodo do tipo DSA. Quimica Nova, 2012, 35, 1981-1984.	0.3	6
143	Influence of Supporting Electrolytes on RO 16 Dye Electrochemical Oxidation Using Boron Doped Diamond Electrodes. Materials Research, 2017, 20, 584-591.	1.3	6
144	Gasâ€phase errors affect DFTâ€based electrocatalysis models of oxygen reduction to hydrogen peroxide. ChemElectroChem, 2022, 9, .	3.4	6

#	Article	IF	CITATIONS
145	Aplicação e avanços da espectroscopia de luminescência em análises farmacêuticas. Quimica Nova, 2008, 31, 1755-1774.	0.3	5
146	Selective UV-filter detection with sensors based on stainless steel electrodes modified with polyaniline doped with metal tetrasulfonated phthalocyanine films. Analyst, The, 2009, 134, 1453.	3.5	5
147	Electrochemical and Morphology Study of the BDD/Ti Electrodes with Different Doping Levels. ECS Transactions, 2012, 43, 191-197.	0.5	5
148	Nitrate Removal on a Cu/Cu2O Photocathode under UV Irradiation and Bias Potential. Journal of Advanced Oxidation Technologies, 2013, 16, .	0.5	5
149	Electrosynthesis of Ethylene Glycol from Oxidation of Ethylene Using a TiO2–RuO2/PTFE Gas Diffusion Electrode. Electrocatalysis, 2011, 2, 273-278.	3.0	4
150	Simultaneous Degradation of Diuron and Hexazinone Herbicides by Photo-Fenton: Assessment of Concentrations of H2O2 and Fe2+ by the Response Surface Methodology. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	4
151	UV-irradiation and BDD-based photoelectrolysis for the treatment of halosulfuron-methyl herbicide. Environmental Science and Pollution Research, 2021, 28, 26762-26771.	5.3	4
152	Development of Biomimetic Sensor for Fast and Sensitive Detection of Norfloxacin. The Open Chemical and Biomedical Methods Journal, 2010, 3, 98-107.	0.5	4
153	Carbamide Peroxide Determination in Tooth Whitening Using a Reagentless HRP-Biosensor. Analytical Letters, 2009, 42, 352-365.	1.8	3
154	Electrooxidation of the Reactive Orange 16 Dye Using Boron Doped Diamond and DSA Type Electrodes. ECS Transactions, 2012, 43, 89-96.	0.5	3
155	Simultaneous Degradation of Hexazinone and Diuron Herbicides by H2O2/UV and Toxicity Assessment. Journal of the Brazilian Chemical Society, 2014, , .	0.6	3
156	Resorcinol-based carbon xerogel/ZnO composite for solar-light-induced photodegradation of sulfamerazine. Optical Materials, 2022, 128, 112470.	3.6	3
157	Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor. International Journal of Electrochemistry, 2011, 2011, 1-11.	2.4	2
158	Interactive Lecture in Redox Chemistry: Analysis of the Impact of the Dissemination of University Scientific Research among High School Students. Journal of Chemical Education, 2021, 98, 2279-2289.	2.3	2
159	A study of possible substitutes for the endocrine disruptor DEHP in two hormone receptors. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12516-12525.	3.5	2
160	ELECTROCHEMICAL OXIDATION OF REACTIVE BLACK 5 AND BLUE 19 DYES USING A NON COMMERCIAL BORON-DOPED DIAMOND ELECTRODE. Quimica Nova, 2016, , .	0.3	2
161	Gasâ€Phase Errors Affect DFTâ€Based Electrocatalysis Models of Oxygen Reduction to Hydrogen Peroxide. ChemElectroChem, 2022, 9, .	3.4	2
162	Influence of the sp2 Content on Boron Doped Diamond Electrodes Applied in the Textile Dye Electrooxidation. ECS Transactions, 2014, 58, 27-33.	0.5	1

#	Article	IF	CITATIONS
163	Degradation of Dipyrone by the Electro-Fenton Process in an Electrochemical Flow Reactor with a Modified Gas Diffusion Electrode. Journal of the Brazilian Chemical Society, 2014, , .	0.6	1
164	Ecotoxicity Measurements of Degraded Textile Dye by Electrochemical Process Using Boron-Doped Diamond Electrodes. ECS Transactions, 2015, 64, 25-31.	0.5	1
165	Analysis of degradation products of esfenvalerate by SBSE/HPLC-UV/DAD using fractional factorial design. Quimica Nova, 2014, 37, .	0.3	1
166	Application of Oxides Electrodes (Ru, Ti, Ir and Sn) for the Electrooxidation of Levofloxacin. Current Analytical Chemistry, 2018, 15, 66-74.	1.2	1
167	One-step preparation of Co <u>2</u> V <u>2</u> O <u>7</u> : synthesis and application as Fenton-like catalyst in gas diffusion electrode. Physical Chemistry Chemical Physics, 2022, , .	2.8	1
168	Using Hybrid Coupling Processes for the Treatment of Waste Containing Halosulfuronâ€Methyl Herbicide. ChemElectroChem, 2022, 9, .	3.4	1
169	CHEMICAL DEGRADATION OF ESFENVALERATE AND HPLC-UV-PAD DETECTION OF INTERMEDIATES AND BY-PRODUCTS. Journal of Liquid Chromatography and Related Technologies, 2012, 35, 1081-1090.	1.0	0
170	MEFENAMIC ACID REMOVAL IN WATER USING ACTIVATED CARBON POWDER, RED MUD AND OXIDATION WITH CHLORINE. Quimica Nova, 2014, , .	0.3	0
171	Screening of By-Products of Esfenvalerate in Aqueous Medium Using SBSE Probe Desorption GC-IT-MS Technique. Journal of the Brazilian Chemical Society, 2015, , .	0.6	0
172	Boron-doped diamond electrodes for carbofuran electrochemical degradation. Revista Brasileira De Aplicações De Vácuo, 2016, 35, 17.	0.1	0