
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6359436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	3.3	39
2	Observations of atmospheric oxidation and ozone production in South Korea. Atmospheric Environment, 2022, 269, 118854.	4.1	6
3	Validation of in situ and remote sensing-derived methane refinery emissions in a complex wind environment and chemical implications. Atmospheric Environment, 2022, 273, 118900.	4.1	2
4	Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol. Atmospheric Chemistry and Physics, 2022, 22, 805-821.	4.9	5
5	Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	10
6	Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 1549-1573.	4.9	33
7	Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. Atmospheric Chemistry and Physics, 2022, 22, 4253-4275.	4.9	9
8	CFC-11 measurements in China, Nepal, Pakistan, Saudi Arabia and South Korea (1998–2018): Urban, landfill fire and garbage burning sources. Environmental Chemistry, 2022, 18, 370-392.	1.5	0
9	Understanding the Sources of Ambient Fine Particulate Matter (PM2.5) in Jeddah, Saudi Arabia. Atmosphere, 2022, 13, 711.	2.3	2
10	Source and variability of formaldehyde (HCHO) at northern high latitudes: an integrated satellite, aircraft, and model study. Atmospheric Chemistry and Physics, 2022, 22, 7163-7178.	4.9	9
11	Limitations in representation of physical processes prevent successful simulation of PM _{2.5} during KORUS-AQ. Atmospheric Chemistry and Physics, 2022, 22, 7933-7958.	4.9	17
12	Long-term variations of C1–C5 alkyl nitrates and their sources in Hong Kong. Environmental Pollution, 2021, 270, 116285.	7.5	1
13	Wildfire Smoke Exposure: Covid19 Comorbidity?. Journal of Respiration, 2021, 1, 74-79.	1.1	9
14	Metabolic and behavioral features of acute hyperpurinergia and the maternal immune activation mouse model of autism spectrum disorder. PLoS ONE, 2021, 16, e0248771.	2.5	17
15	HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations. ACS Earth and Space Chemistry, 2021, 5, 1436-1454.	2.7	13
16	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, 2021, 2, .	6.8	32
17	Large hemispheric difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid- and high latitudes. Atmospheric Chemistry and Physics, 2021, 21, 9065-9088.	4.9	8
18	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.	4.9	60

#	Article	IF	CITATIONS
19	Top-down estimates of anthropogenic VOC emissions in South Korea using formaldehyde vertical column densities from aircraft during the KORUS-AQ campaign. Elementa, 2021, 9, .	3.2	16
20	Evolution of formaldehyde (HCHO) in a plume originating from a petrochemical industry and its volatile organic compounds (VOCs) emission rate estimation. Elementa, 2021, 9, .	3.2	6
21	Rapid cloud removal of dimethyl sulfide oxidation products limits SO ₂ and cloud condensation nuclei production in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
22	Observations of Volatile Organic Compounds in the Los Angeles Basin during COVID-19. ACS Earth and Space Chemistry, 2021, 5, 3045-3055.	2.7	6
23	Long-term atmospheric emissions for the Coal Oil Point natural marine hydrocarbon seep field, offshore California. Atmospheric Chemistry and Physics, 2021, 21, 17607-17629.	4.9	4
24	Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. Environmental Science & Technology, 2021, 55, 16326-16338.	10.0	8
25	Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031685.	3.3	23
26	Missing OH reactivity in the global marine boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 4013-4029.	4.9	25
27	Evidence of Nighttime Production of Organic Nitrates During SEAC 4 RS, FRAPPÉ, and KORUSâ€AQ. Geophysical Research Letters, 2020, 47, e2020GL087860.	4.0	7
28	Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmospheric Chemistry and Physics, 2020, 20, 2927-2951.	4.9	40
29	Long-term temporal variations and source changes of halocarbons in the Greater Pearl River Delta region, China. Atmospheric Environment, 2020, 234, 117550.	4.1	12
30	Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high resolution airborne remote sensing observations in a high ozone episode during the KORUS-AQ campaign. Atmospheric Environment, 2020, 224, 117341.	4.1	65
31	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	3.8	189
32	Evidence for an Oceanic Source of Methyl Ethyl Ketone to the Atmosphere. Geophysical Research Letters, 2020, 47, e2019GL086045.	4.0	8
33	Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US. Atmospheric Chemistry and Physics, 2020, 20, 3739-3776.	4.9	47
34	Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.	7.1	118
35	Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ). Elementa, 2020, 8, .	3.2	32
36	Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ. Elementa, 2020, 8, .	3.2	44

#	Article	IF	CITATIONS
37	Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 14617-14647.	4.9	34
38	Constraining remote oxidation capacity with ATom observations. Atmospheric Chemistry and Physics, 2020, 20, 7753-7781.	4.9	36
39	An inversion of NO _{<i>x</i>} and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and Physics. 2020. 20. 9837-9854.	4.9	30
40	The Clobal Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	9.9	1,199
41	Emission of volatile halogenated organic compounds over various Dead Sea landscapes. Atmospheric Chemistry and Physics, 2019, 19, 7667-7690.	4.9	5
42	Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Shortâ€Lived Ozoneâ€Depleting Substances: A Machineâ€Learning Approach. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12319-12339.	3.3	17
43	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.	4.9	32
44	Impacts of household sources on air pollution at village and regional scales in India. Atmospheric Chemistry and Physics, 2019, 19, 7719-7742.	4.9	30
45	Source Contributions to Carbon Monoxide Concentrations During KORUSâ€AQ Based on CAMâ€chem Model Applications. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2796-2822.	3.3	21
46	Atmospheric Acetaldehyde: Importance of Airâ€ 5 ea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	4.0	41
47	Simulating the Weekly Cycle of NO x â€VOCâ€HO x â€O 3 Photochemical System in the South Coast of California During CalNexâ€2010 Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3532-3555.	3.3	8
48	Source Apportionment of Ambient Methane Enhancements in Los Angeles, California, To Evaluate Emission Inventory Estimates. Environmental Science & Technology, 2019, 53, 2961-2970.	10.0	13
49	Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and Physics, 2019, 19, 12779-12795.	4.9	24
50	Atmospheric Implications of Large C ₂ ₅ Alkane Emissions From the U.S. Oil and Gas Industry. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1148-1169.	3.3	12
51	Observations of C1–C5 alkyl nitrates in the Yellow River Delta, northern China: Effects of biomass burning and oil field emissions. Science of the Total Environment, 2019, 656, 129-139.	8.0	18
52	Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea. Elementa, 2019, 7, .	3.2	38
53	Summertime C1-C5 alkyl nitrates over Beijing, northern China: Spatial distribution, regional transport, and formation mechanisms. Atmospheric Research, 2018, 204, 102-109.	4.1	17
54	An aerosol particle containing enriched uranium encountered in the remote upper troposphere. Journal of Environmental Radioactivity, 2018, 184-185, 95-100.	1.7	6

#	Article	IF	CITATIONS
55	Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1426-1440.	3.3	66
56	Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. Atmospheric Chemistry and Physics, 2018, 18, 2461-2480.	4.9	69
57	Ambient Nonmethane Hydrocarbon Levels Along Colorado's Northern Front Range: Acute and Chronic Health Risks. Environmental Science & Technology, 2018, 52, 4514-4525.	10.0	47
58	Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China. Environmental Pollution, 2018, 233, 806-819.	7.5	74
59	Wintertime Transport of Reactive Trace Gases From East Asia Into the Deep Tropics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,877.	3.3	5
60	Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmospheric Chemistry and Physics, 2018, 18, 14493-14510.	4.9	18
61	Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NO _{<i>x</i>} . Environmental Science & Technology, 2018, 52, 13738-13746.	10.0	79
62	Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,527.	3.3	24
63	Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.	4.9	105
64	Variability in Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three Decades. Geophysical Research Letters, 2018, 45, 11,499.	4.0	46
65	Continued Emissions of the Ozoneâ€Depleting Substance Carbon Tetrachloride From Eastern Asia. Geophysical Research Letters, 2018, 45, 11423-11430.	4.0	37
66	Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,429.	3.3	33
67	Emissions from village cookstoves in Haryana, India, and their potential impacts on air quality. Atmospheric Chemistry and Physics, 2018, 18, 15169-15182.	4.9	33
68	Spatial and Temporal Variability in Emissions of Fluorinated Gases from a California Landfill. Environmental Science & Technology, 2018, 52, 6789-6797.	10.0	11
69	Sources and characteristics of summertime organic aerosol in the Colorado Front Range: perspective from measurements and WRF-Chem modeling. Atmospheric Chemistry and Physics, 2018, 18, 8293-8312.	4.9	13
70	Molecular distributions of dicarboxylic acids, oxocarboxylic acids and <i>l±</i> -dicarbonyls in PM _{2.5} collected at the top of Mt. Tai, North China, during the wheat burning season of 2014. Atmospheric Chemistry and Physics, 2018, 18, 10741-10758.	4.9	27
71	Gas emissions, tars, and secondary minerals at the Ruth Mullins and Tiptop coal mine fires. International Journal of Coal Geology, 2018, 195, 304-316.	5.0	18
72	Using an Inverse Model to Reconcile Differences in Simulated and Observed Global Ethane Concentrations and Trends Between 2008 and 2014. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,262.	3.3	14

#	Article	IF	CITATIONS
73	A quantitative assessment of distributions and sources of tropospheric halocarbons measured in Singapore. Science of the Total Environment, 2018, 619-620, 528-544.	8.0	13
74	Meteorological and Chemical Factors Controlling Ozone Formation in Seoul during MAPS-Seoul 2015. Aerosol and Air Quality Research, 2018, 18, 2274-2286.	2.1	11
75	The Controlling Factors of Photochemical Ozone Production in Seoul, South Korea. Aerosol and Air Quality Research, 2018, 18, 2253-2261.	2.1	18
76	Stable isotope profiles reveal active production of VOCs from human-associated microbes. Journal of Breath Research, 2017, 11, 017101.	3.0	26
77	Estimating methane emissions from biological and fossilâ€fuel sources in the San Francisco Bay Area. Geophysical Research Letters, 2017, 44, 486-495.	4.0	25
78	Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4565-4577.	3.3	10
79	A dualâ€chamber method for quantifying the effects of atmospheric perturbations on secondary organic aerosol formation from biomass burning emissions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6043-6058.	3.3	41
80	Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.	3.3	184
81	Leakage Rates of Refrigerants CFC-12, HCFC-22, and HFC-134a from Operating Mobile Air Conditioning Systems in Guangzhou, China: Tests inside a Busy Urban Tunnel under Hot and Humid Weather Conditions. Environmental Science and Technology Letters, 2017, 4, 481-486.	8.7	10
82	New insights into the column CH ₂ O/NO ₂ ratio as an indicator of nearâ€surface ozone sensitivity. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8885-8907.	3.3	87
83	Revisiting global fossil fuel and biofuel emissions of ethane. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2493-2512.	3.3	43
84	Gaseous emissions from the Lotts Creek coal mine fire: Perry County, Kentucky. International Journal of Coal Geology, 2017, 180, 57-66.	5.0	15
85	Characterization of carbon monoxide, methane and nonmethane hydrocarbons in emerging cities of Saudi Arabia and Pakistan and in Singapore. Journal of Atmospheric Chemistry, 2017, 74, 87-113.	3.2	18
86	Tropospheric volatile organic compounds in China. Science of the Total Environment, 2017, 574, 1021-1043.	8.0	169
87	Evaluation of the effectiveness of air pollution control measures in Hong Kong. Environmental Pollution, 2017, 220, 87-94.	7.5	39
88	Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors. Atmospheric Chemistry and Physics, 2017, 17, 1471-1489.	4.9	119
89	Modeling C ₁ –C ₄ Alkyl Nitrate Photochemistry and Their Impacts on O ₃ Production in Urban and Suburban Environments of Hong Kong. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,539.	3.3	14
90	Long-term O ₃ –precursor relationships in Hong Kong: field observation and model simulation. Atmospheric Chemistry and Physics, 2017, 17, 10919-10935.	4.9	98

D R BLAKE

#	Article	IF	CITATIONS
91	Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea – Part 1: Observations and source classification. Atmospheric Chemistry and Physics, 2017, 17, 1105-1123.	4.9	28
92	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	4.9	85
93	Higher measured than modeled ozone production at increased NO _{<i>x</i>} levels in the Colorado Front Range. Atmospheric Chemistry and Physics, 2017, 17, 11273-11292.	4.9	18
94	Assessing a New Clue to How Much Carbon Plants Take Up. Eos, 2017, , .	0.1	2
95	Surface ozone in the Colorado northern Front Range and the influence of oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014. Elementa, 2017, 5, .	3.2	33
96	Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and offline GC-FID. Atmospheric Measurement Techniques, 2016, 9, 1325-1340.	3.1	27
97	Nighttime chemistry at a high altitude site above Hong Kong. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2457-2475.	3.3	78
98	OH reactivity in urban and suburban regions in Seoul, South Korea – an East Asian megacity in a rapid transition. Faraday Discussions, 2016, 189, 231-251.	3.2	31
99	Bacteria in the airways of patients with cystic fibrosis are genetically capable of producing VOCs in breath. Journal of Breath Research, 2016, 10, 047103.	3.0	30
100	Spatial patterns and source attribution of urban methane in the Los Angeles Basin. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2490-2507.	3.3	50
101	Formaldehyde column density measurements as a suitable pathway to estimate nearâ€surface ozone tendencies from space. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13088-13112.	3.3	19
102	Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas. Environmental Science & Technology, 2016, 50, 10756-10764.	10.0	41
103	Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2476-2489.	3.3	118
104	Observational evidence for the convective transport of dust over the Central United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1306-1319.	3.3	23
105	Atmospheric benzene observations from oil and gas production in the Denverâ€Julesburg Basin in July and August 2014. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,055.	3.3	70
106	Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode. Atmospheric Chemistry and Physics, 2016, 16, 9891-9903.	4.9	168
107	Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4272-4295.	3.3	24
108	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmospheric Chemistry and Physics, 2016, 16, 11043-11081.	4.9	131

#	Article	IF	CITATIONS
109	Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior. Atmospheric Chemistry and Physics, 2016, 16, 14057-14078.	4.9	38
110	Effectiveness of replacing catalytic converters in LPG-fueled vehicles in Hong Kong. Atmospheric Chemistry and Physics, 2016, 16, 6609-6626.	4.9	46
111	Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niñ0. Atmospheric Chemistry and Physics, 2016, 16, 11711-11732.	4.9	161
112	Quantifying the loss of processed natural gas within California's South Coast Air Basin using long-term measurements of ethane and methane. Atmospheric Chemistry and Physics, 2016, 16, 14091-14105.	4.9	48
113	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics. 2016. 16. 5969-5991.	4.9	173
114	Using stable isotopes of hydrogen to quantify biogenic and thermogenic atmospheric methane sources: A case study from the Colorado Front Range. Geophysical Research Letters, 2016, 43, 11,462.	4.0	34
115	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	3.3	93
116	Wet scavenging of soluble gases in DC3 deep convective storms using WRFâ€Chem simulations and aircraft observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4233-4257.	3.3	29
117	Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. Science, 2016, 351, 1317-1320.	12.6	183
118	Continued emissions of carbon tetrachloride from the United States nearly two decades after its phaseout for dispersive uses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2880-2885.	7.1	32
119	Chemical Characterization and Source Apportionment of PM2.5 in Rabigh, Saudi Arabia. Aerosol and Air Quality Research, 2016, 16, 3114-3129.	2.1	34
120	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	9.9	824
121	Quantification of Aerosol Hydrofluoroalkane HFAâ€134a Elimination in the Exhaled Human Breath Following Inhaled Corticosteroids Administration. Clinical and Translational Science, 2015, 8, 445-450.	3.1	1
122	Upper tropospheric ozone production from lightning NO <i>_x</i> â€impacted convection: Smoke ingestion case study from the DC3 campaign. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2505-2523.	3.3	88
123	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.	4.9	62
124	Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the scale-dependent role of monsoonal flows, the Madden–Julian Oscillation, tropical cyclones, squall lines and cold pools. Atmospheric Chemistry and Physics, 2015, 15, 1745-1768.	4.9	39
125	Increase in HFCâ€134a emissions in response to the success of the Montreal Protocol. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,728.	3.3	15
126	Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy. Atmosphere, 2015, 6, 1175-1194.	2.3	4

#	Article	IF	CITATIONS
127	Airborne measurements of organosulfates over the continental U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 2990-3005.	3.3	96
128	The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13514-13519.	7.1	76
129	Nighttime air quality under desert conditions. Atmospheric Environment, 2015, 114, 102-111.	4.1	6
130	Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region. Environmental Science & Technology, 2015, 49, 8175-8182.	10.0	55
131	Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies. Atmospheric Environment, 2015, 122, 809-818.	4.1	64
132	Changes in nitrogen oxides emissions in California during 2005–2010 indicated from topâ€down and bottomâ€up emission estimates. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,928.	3.3	16
133	Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation. ISME Journal, 2014, 8, 1247-1258.	9.8	114
134	Results from the International Halocarbons in Air Comparison Experiment (IHALACE). Atmospheric Measurement Techniques, 2014, 7, 469-490.	3.1	37
135	Elevated Carbon Monoxide to Carbon Dioxide Ratio in the Exhaled Breath of Mice Treated With a Single Dose of Lipopolysaccharide. Open Forum Infectious Diseases, 2014, 1, ofu085.	0.9	15
136	On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. Environmental Pollution, 2014, 195, 39-47.	7.5	53
137	Air Quality in Mecca and Surrounding Holy Places in Saudi Arabia During Hajj: Initial Survey. Environmental Science & Technology, 2014, 48, 8529-8537.	10.0	45
138	High-Global Warming Potential F-gas Emissions in California: Comparison of Ambient-Based versus Inventory-Based Emission Estimates, and Implications of Refined Estimates. Environmental Science & Technology, 2014, 48, 1084-1093.	10.0	5
139	Increasing External Effects Negate Local Efforts to Control Ozone Air Pollution: A Case Study of Hong Kong and Implications for Other Chinese Cities. Environmental Science & Technology, 2014, 48, 10769-10775.	10.0	125
140	Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor. Environmental Science & Technology, 2014, 48, 11235-11242.	10.0	154
141	Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7741-7756.	3.3	126
142	Ambient CFCs and HCFC-22 observed concurrently at 84 sites in the Pearl River Delta region during the 2008-2009 grid studies. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7699-7717.	3.3	19
143	Evidence of mixing between polluted convective outflow and stratospheric air in the upper troposphere during DC3. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,477.	3.3	16
144	Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes. Atmospheric Chemistry and Physics, 2014, 14, 13175-13188.	4.9	305

#	Article	IF	CITATIONS
145	Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles. Atmospheric Chemistry and Physics, 2014, 14, 3427-3440.	4.9	90
146	Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley. Atmospheric Chemistry and Physics, 2014, 14, 4955-4978.	4.9	59
147	Convective transport of very short lived bromocarbons to the stratosphere. Atmospheric Chemistry and Physics, 2014, 14, 5781-5792.	4.9	59
148	Estimates of European emissions of methyl chloroform using a Bayesian inversion method. Atmospheric Chemistry and Physics, 2014, 14, 9755-9770.	4.9	25
149	Gas signatures from <i>Escherichia coli</i> and <i>Escherichia coli</i> â€inoculated human whole blood. Clinical and Translational Medicine, 2013, 2, 13.	4.0	27
150	VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmospheric Environment, 2013, 76, 125-135.	4.1	107
151	Gaseous compounds and efflorescences generated in self-heating coal-waste dumps — A case study from the Upper and Lower Silesian Coal Basins (Poland). International Journal of Coal Geology, 2013, 116-117, 247-261.	5.0	60
152	Air quality in the Industrial Heartland of Alberta, Canada and potential impacts on human health. Atmospheric Environment, 2013, 81, 702-709.	4.1	32
153	Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.	12.9	1,649
154	Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. Journal of Hazardous Materials, 2013, 250-251, 403-411.	12.4	120
155	Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. International Journal of Coal Geology, 2013, 116-117, 63-74.	5.0	115
156	Exhaled breath and fecal volatile organic biomarkers of chronic kidney disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2531-2537.	2.4	50
157	Relations between isoprene and nitric oxide in exhaled breath and the potential influence of outdoor ozone: a pilot study. Journal of Breath Research, 2013, 7, 036007.	3.0	9
158	Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong. Atmospheric Chemistry and Physics, 2013, 13, 3881-3898.	4.9	72
159	Measurements of reactive trace gases and variable O ₃ formation rates in some South Carolina biomass burning plumes. Atmospheric Chemistry and Physics, 2013, 13, 1141-1165.	4.9	170
160	The contribution of oceanic methyl iodide to stratospheric iodine. Atmospheric Chemistry and Physics, 2013, 13, 11869-11886.	4.9	42
161	Observations of total RONO ₂ over the boreal forest: NO _x sinks and HNO ₃ sources. Atmospheric Chemistry and Physics, 2013, 13, 4543-4562.	4.9	76
162	Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign. Atmospheric Chemistry and Physics, 2013, 13, 4707-4721.	4.9	67

#	Article	IF	CITATIONS
163	Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory. Atmospheric Chemistry and Physics, 2013, 13, 8551-8567.	4.9	77
164	Quantifying sources of methane using light alkanes in the Los Angeles basin, California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4974-4990.	3.3	167
165	Emission estimates of HCFCs and HFCs in California from the 2010 CalNex study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2019-2030.	3.3	10
166	Elevated Carbon Monoxide in the Exhaled Breath of Mice during a Systemic Bacterial Infection. PLoS ONE, 2013, 8, e69802.	2.5	12
167	Chemical data quantify <i>Deepwater Horizon</i> hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20246-20253.	7.1	258
168	Noninvasive Measurement of Plasma Triglycerides and Free Fatty Acids from Exhaled Breath. Journal of Diabetes Science and Technology, 2012, 6, 86-101.	2.2	12
169	F. Sherwood Rowland (1927–2012). Science, 2012, 336, 170-170.	12.6	0
170	Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources. Atmospheric Chemistry and Physics, 2012, 12, 1423-1447.	4.9	193
171	Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmospheric Chemistry and Physics, 2012, 12, 3939-3949.	4.9	157
172	Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere. Atmospheric Chemistry and Physics, 2012, 12, 1135-1150.	4.9	33
173	An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE. Atmospheric Chemistry and Physics, 2012, 12, 6799-6825.	4.9	38
174	Kai, Tyler, Randerson & Blake reply. Nature, 2012, 486, E4-E4.	27.8	1
175	Effect of Hemodialysis and Diet on the Exhaled Breath Methanol Concentration in Patients With ESRD. , 2012, 22, 357-364.		19
176	Exposure to Potentially Toxic Hydrocarbons and Halocarbons Released From the Dialyzer and Tubing Set During Hemodialysis. American Journal of Kidney Diseases, 2012, 60, 609-616.	1.9	18
177	Air quality implications of the <i>Deepwater Horizon</i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20280-20285.	7.1	79
178	Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature, 2012, 488, 490-494.	27.8	161
179	Power-dependent speciation of volatile organic compounds in aircraft exhaust. Atmospheric Environment, 2012, 61, 275-282.	4.1	16
180	Airborne and groundâ€based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. Journal of Geophysical Research, 2012, 117, .	3.3	97

#	Article	IF	CITATIONS
181	Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions. Journal of Geophysical Research, 2012, 117, .	3.3	16
182	Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China. Journal of Geophysical Research, 2012, 117, .	3.3	74
183	Observations of isoprene, methacrolein (MAC) and methyl vinyl ketone (MVK) at a mountain site in Hong Kong. Journal of Geophysical Research, 2012, 117, .	3.3	20
184	Chemical composition of tropospheric air masses encountered during high altitude flights (>11.5Âkm) during the 2009 fall Operation Ice Bridge field campaign. Journal of Geophysical Research, 2012, 117, .	3.3	3
185	Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California. Journal of Geophysical Research, 2012, 117, .	3.3	50
186	On the Sources of Methane to the Los Angeles Atmosphere. Environmental Science & Technology, 2012, 46, 9282-9289.	10.0	126
187	Baseline measurements of ethene in 2002: Implications for increased ethanol use and biomass burning on air quality and ecosystems. Atmospheric Environment, 2012, 56, 161-168.	4.1	6
188	Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA. Science of the Total Environment, 2012, 420, 146-159.	8.0	87
189	Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign. Journal of Geophysical Research, 2011, 116, .	3.3	104
190	Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, 2011, 116, .	3.3	206
191	Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	107
192	Patterns of CO ₂ and radiocarbon across high northern latitudes during International Polar Year 2008. Journal of Geophysical Research, 2011, 116, .	3.3	59
193	Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature, 2011, 476, 198-201.	27.8	156
194	Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature, 2011, 476, 194-197.	27.8	167
195	Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill. Science, 2011, 331, 1295-1299.	12.6	162
196	Analysis of Coal-Mine-Fire Gas. , 2011, , 127-134.		0
197	Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILACRO 2006 campaign: measurement comparison, emission ratios, and source attribution. Atmospheric Chemistry and Physics, 2011, 11, 2399-2421.	4.9	127
198	Boreal forest fire emissions in fresh Canadian smoke plumes: C ₁ -C ₁₀ volatile organic compounds (VOCs), CO ₂ , CO, NO ₂ , NO, HCN and CH ₃ CN. Atmospheric Chemistry and Physics, 2011, 11, 6445-6463.	4.9	209

#	Article	IF	CITATIONS
199	Anthropogenic emissions during Arctas-A: mean transport characteristics and regional case studies. Atmospheric Chemistry and Physics, 2011, 11, 8677-8701.	4.9	25
200	Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange. Atmospheric Chemistry and Physics, 2011, 11, 13181-13199.	4.9	35
201	Size-resolved aerosol emission factors and new particle formation/growth activity occurring in Mexico City during the MILAGRO 2006 Campaign. Atmospheric Chemistry and Physics, 2011, 11, 8861-8881.	4.9	28
202	Observations of nonmethane organic compounds during ARCTAS â^ Part 1: Biomass burning emissions and plume enhancements. Atmospheric Chemistry and Physics, 2011, 11, 11103-11130.	4.9	80
203	Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds. Atmospheric Chemistry and Physics, 2011, 11, 11867-11894.	4.9	46
204	HFC-152a and HFC-134a emission estimates and characterization of CFCs, CFC replacements, and other halogenated solvents measured during the 2008 ARCTAS campaign (CARB phase) over the South Coast Air Basin of California. Atmospheric Chemistry and Physics, 2011, 11, 2655-2669.	4.9	19
205	Impact of organic nitrates on urban ozone production. Atmospheric Chemistry and Physics, 2011, 11, 4085-4094.	4.9	78
206	Accumulation-mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long-range transport of polluted and clean air from the Asian continent. Journal of Geophysical Research, 2011, 116, .	3.3	22
207	The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. Journal of Geophysical Research, 2011, 116, .	3.3	99
208	Vertical distributions of non-methane hydrocarbons and halocarbons in the lower troposphere over northeast China. Atmospheric Environment, 2011, 45, 6501-6509.	4.1	33
209	Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E1166-E1175.	3.5	76
210	Old Smokey coal fire, Floyd County, Kentucky: Estimates of gaseous emission rates. International Journal of Coal Geology, 2011, 87, 150-156.	5.0	45
211	Emission Characteristics of Ultrafine Particles and Volatile Organic Compounds in a Commercial Printing Center. Journal of the Air and Waste Management Association, 2011, 61, 1093-1101.	1.9	25
212	A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. Atmospheric Chemistry and Physics, 2010, 10, 2091-2115.	4.9	43
213	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 9739-9760. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated	4.9	234
214	C ₂ –C ₁₀ volatile organic compounds (VOCs), CO ₂ , CH ₄ , CO, NO, NO ₂ , NO _y , O ₃ and	4.9	198
215	Finding the missing stratospheridtBr _{y_{Sub>Su}}	4.9	147
216	Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.	4.9	82

#	Article	IF	CITATIONS
217	The production and persistence of ΣRONO ₂ in the Mexico City plume. Atmospheric Chemistry and Physics, 2010, 10, 7215-7229.	4.9	61
218	Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. Atmospheric Chemistry and Physics, 2010, 10, 2353-2375.	4.9	131
219	Bromoform and dibromomethane in the tropics: a 3-D model study of chemistry and transport. Atmospheric Chemistry and Physics, 2010, 10, 719-735.	4.9	112
220	Arctic mercury depletion and its quantitative link with halogens. Journal of Atmospheric Chemistry, 2010, 65, 145-170.	3.2	31
221	Methane emissions inventory verification in southern California. Atmospheric Environment, 2010, 44, 1-7.	4.1	112
222	Seasonal and diurnal measurements of carbon monoxide and nonmethane hydrocarbons at Mt. Wilson, California: Indirect evidence of atomic Cl in the Los Angeles basin. Atmospheric Environment, 2010, 44, 2271-2279.	4.1	17
223	New Directions: Restoring the westerly winds in the Southern Hemisphere: Climate's lever. Atmospheric Environment, 2010, 44, 3866-3868.	4.1	2
224	Evaluation of an urban NMHC emission inventory by measurements and impact on CTM results. Atmospheric Environment, 2010, 44, 3843-3855.	4.1	23
225	Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations. Atmospheric Environment, 2010, 44, 4565-4574.	4.1	23
226	Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact. Atmospheric Chemistry and Physics, 2010, 10, 7603-7615.	4.9	344
227	Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study. Journal of Geophysical Research, 2010, 115, .	3.3	35
228	Effect of local and regional sources on the isotopic composition of nitrous oxide in the tropical free troposphere and tropopause layer. Journal of Geophysical Research, 2010, 115, .	3.3	7
229	Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4. Journal of Geophysical Research, 2010, 115, .	3.3	31
230	An ozone episode in the Pearl River Delta: Field observation and model simulation. Journal of Geophysical Research, 2010, 115, .	3.3	51
231	Emission patterns and spatiotemporal variations of halocarbons in the Pearl River Delta region, southern China. Journal of Geophysical Research, 2010, 115, .	3.3	35
232	A new interpretation of total column BrO during Arctic spring. Geophysical Research Letters, 2010, 37,	4.0	116
233	Effectiveness of a Florida Landfill Biocover for Reduction of CH ₄ and NMHC Emissions. Environmental Science & Technology, 2010, 44, 1197-1203.	10.0	46
234	Ethane and <i>n</i> -pentane in exhaled breath are biomarkers of exposure not effect. Biomarkers, 2009, 14, 17-25.	1.9	38

#	Article	IF	CITATIONS
235	Release and uptake of volatile inorganic and organic gases through the snowpack at Niwot Ridge, Colorado. Biogeochemistry, 2009, 95, 167-183.	3.5	22
236	The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents. International Journal of Coal Geology, 2009, 80, 63-67.	5.0	74
237	Atmospheric Chemistry of Sulfuryl Fluoride: Reaction with OH Radicals, Cl Atoms and O ₃ , Atmospheric Lifetime, IR Spectrum, and Global Warming Potential. Environmental Science & Technology, 2009, 43, 1067-1070.	10.0	76
238	Halocarbon Emissions from the United States and Mexico and Their Global Warming Potential. Environmental Science & Technology, 2009, 43, 1055-1060.	10.0	46
239	Chemical characterization of waterâ€soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. Journal of Geophysical Research, 2009, 114, .	3.3	69
240	Acetaldehyde and hexanaldehyde from cultured white cells. Journal of Translational Medicine, 2009, 7, 31.	4.4	36
241	Variability of submicron aerosol observed at a rural site in Beijing in the summer of 2006. Journal of Geophysical Research, 2009, 114, .	3.3	72
242	Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment. Journal of Geophysical Research, 2009, 114, .	3.3	86
243	Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China. Journal of Geophysical Research, 2009, 114, .	3.3	56
244	Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity. Atmospheric Chemistry and Physics, 2009, 9, 271-285.	4.9	118
245	Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong. Atmospheric Chemistry and Physics, 2009, 9, 7491-7504.	4.9	143
246	Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study. Atmospheric Chemistry and Physics, 2009, 9, 3425-3442.	4.9	114
247	Characterization of volatile organic compounds (VOCs) in Asian and north American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers. Atmospheric Chemistry and Physics, 2009, 9, 5371-5388.	4.9	59
248	Concurrent observations of air pollutants at two sites in the Pearl River Delta and the implication of regional transport. Atmospheric Chemistry and Physics, 2009, 9, 7343-7360.	4.9	128
249	Airborne observations of total RONO ₂ : new constraints on the yield and lifetime of isoprene nitrates. Atmospheric Chemistry and Physics, 2009, 9, 1451-1463.	4.9	91
250	Airborne measurement of OH reactivity during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 163-173.	4.9	293
251	Biomass burning and urban air pollution over the Central Mexican Plateau. Atmospheric Chemistry and Physics, 2009, 9, 4929-4944.	4.9	138
252	Sources and transport of Δ ¹⁴ C in CO ₂ within the Mexico City Basin and vicinity. Atmospheric Chemistry and Physics, 2009, 9, 4973-4985.	4.9	31

#	Article	IF	CITATIONS
253	Measurements of OH and HO ₂ concentrations during the MCMA-2006 field campaign – Part 2: Model comparison and radical budget. Atmospheric Chemistry and Physics, 2009, 9, 6655-6675.	4.9	105
254	Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill. Waste Management, 2008, 28, 1892-1908.	7.4	91
255	A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements. Atmospheric Environment, 2008, 42, 2831-2848.	4.1	87
256	Measurements of nonmethane hydrocarbons in 28 United States cities. Atmospheric Environment, 2008, 42, 170-182.	4.1	213
257	Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmospheric Environment, 2008, 42, 4393-4408.	4.1	157
258	Authors response to the above comment by M. Vogt et al. on "New Directions: Enhancing the natural cycle to slow global warming― Atmospheric Environment, 2008, 42, 4806-4809.	4.1	2
259	Influence of the public transportation system on the air quality of a major urban center. A case study: Milan, Italy. Atmospheric Environment, 2008, 42, 7915-7923.	4.1	33
260	Biogenic versus anthropogenic sources of CO in the United States. Geophysical Research Letters, 2008, 35, .	4.0	128
261	The impact of local sources and longâ€range transport on aerosol properties over the northeast U.S. region during INTEXâ€NA. Journal of Geophysical Research, 2008, 113, .	3.3	23
262	Characteristics of the atmospheric CO ₂ signal as observed over the conterminous United States during INTEXâ€NA. Journal of Geophysical Research, 2008, 113, .	3.3	34
263	Mechanisms that influence the formation of highâ€ozone regions in the boundary layer downwind of the Asian continent in winter and spring. Journal of Geophysical Research, 2008, 113, .	3.3	6
264	Bromoform and dibromomethane measurements in the seacoast region of New Hampshire, 2002–2004. Journal of Geophysical Research, 2008, 113, .	3.3	56
265	Carbonyl sulfide (OCS): Largeâ€scale distributions over North America during INTEXâ€NA and relationship to CO ₂ . Journal of Geophysical Research, 2008, 113, .	3.3	30
266	HO _{<i>x</i>} chemistry during INTEXâ€A 2004: Observation, model calculation, and comparison with previous studies. Journal of Geophysical Research, 2008, 113, .	3.3	163
267	Global budget of ethane and regional constraints on U.S. sources. Journal of Geophysical Research, 2008, 113, .	3.3	164
268	Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign. Journal of Geophysical Research, 2008, 113,	3.3	35
269	Formation and transport of oxidized reactive nitrogen, ozone, and secondary organic aerosol in Tokyo. Journal of Geophysical Research, 2008, 113, .	3.3	43
270	Radiative impact of mixing state of black carbon aerosol in Asian outflow. Journal of Geophysical Research, 2008, 113, .	3.3	120

#	Article	IF	CITATIONS
271	Contribution of Carbonyl Photochemistry to Aging of Atmospheric Secondary Organic Aerosol. Journal of Physical Chemistry A, 2008, 112, 8337-8344.	2.5	61
272	Methyl chloride and the U.S. cigarette. Nicotine and Tobacco Research, 2008, 10, 1621-1625.	2.6	2
273	Photosynthetic Control of Atmospheric Carbonyl Sulfide During the Growing Season. Science, 2008, 322, 1085-1088.	12.6	196
274	Factors influencing the large-scale distribution of Hg° in the Mexico City area and over the North Pacific. Atmospheric Chemistry and Physics, 2008, 8, 2103-2114.	4.9	47
275	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.	4.9	94
276	Investigating the sources and atmospheric processing of fine particles from Asia and the Northwestern United States measured during INTEX B. Atmospheric Chemistry and Physics, 2008, 8, 1835-1853.	4.9	54
277	Continental outflow from the US to the upper troposphere over the North Atlantic during the NASA INTEX-NA Airborne Campaign. Atmospheric Chemistry and Physics, 2008, 8, 1989-2005.	4.9	8
278	Source characteristics of volatile organic compounds during high ozone episodes in Hong Kong, Southern China. Atmospheric Chemistry and Physics, 2008, 8, 4983-4996.	4.9	43
279	Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15613-15618.	7.1	134
280	Direct Measurements of the Convective Recycling of the Upper Troposphere. Science, 2007, 315, 816-820.	12.6	114
281	The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 2007, 7, 5175-5196.	4.9	212
282	Ozone production and hydrocarbon reactivity in Hong Kong, Southern China. Atmospheric Chemistry and Physics, 2007, 7, 557-573.	4.9	141
283	Unexpected consequences of increasing CO2and ocean acidity on marine production of DMS and CH2Cll: Potential climate impacts. Geophysical Research Letters, 2007, 34, .	4.0	56
284	Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004. Geophysical Research Letters, 2007, 34, .	4.0	191
285	Source characteristics of oxygenated volatile organic compounds and hydrogen cyanide. Journal of Geophysical Research, 2007, 112, .	3.3	42
286	Transport of radonâ€⊋22 and methyl iodide by deep convection in the GFDL Global Atmospheric Model AM2. Journal of Geophysical Research, 2007, 112, .	3.3	16
287	Alkyl nitrates in outflow from North America over the North Atlantic during Intercontinental Transport of Ozone and Precursors 2004. Journal of Geophysical Research, 2007, 112, .	3.3	33
288	Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. Journal of Geophysical Research, 2007, 112, .	3.3	182

#	Article	IF	CITATIONS
289	Effects of mixing on evolution of hydrocarbon ratios in the troposphere. Journal of Geophysical Research, 2007, 112, .	3.3	140
290	Statistical inference of OH concentrations and air mass dilution rates from successive observations of nonmethane hydrocarbons in single air masses. Journal of Geophysical Research, 2007, 112, .	3.3	31
291	Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. Journal of Geophysical Research, 2007, 112, .	3.3	102
292	On the use of nonmethane hydrocarbons for the determination of age spectra in the lower stratosphere. Journal of Geophysical Research, 2007, 112, .	3.3	14
293	Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation. Journal of Geophysical Research, 2007, 112, .	3.3	13
294	Measurements of Pollution in the Troposphere (MOPITT) validation exercises during summer 2004 field campaigns over North America. Journal of Geophysical Research, 2007, 112, .	3.3	98
295	Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. Journal of Geophysical Research, 2007, 112, .	3.3	232
296	Summertime influence of Asian pollution in the free troposphere over North America. Journal of Geophysical Research, 2007, 112, .	3.3	86
297	Determination of urban volatile organic compound emission ratios and comparison with an emissions database. Journal of Geophysical Research, 2007, 112, .	3.3	254
298	Seasonal variations of atmospheric C ₂ –C ₇ nonmethane hydrocarbons in Tokyo. Journal of Geophysical Research, 2007, 112, .	3.3	33
299	Measurements of reactive nitrogen produced by tropical thunderstorms during BIBLE . Journal of Geophysical Research, 2007, 112, .	3.3	25
300	Strong evidence for negligible methyl chloroform (CH3CCl3) emissions from biomass burning. Geophysical Research Letters, 2007, 34, .	4.0	5
301	Evolution of mixing state of black carbon in polluted air from Tokyo. Geophysical Research Letters, 2007, 34, .	4.0	149
302	A large terrestrial source of methyl iodide. Geophysical Research Letters, 2007, 34, .	4.0	69
303	The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research, 2007, 112, .	3.3	206
304	The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology, 2007, 72, 124-140.	5.0	279
305	Hydroxyl concentration estimates in the sunlit snowpack at Summit, Greenland. Atmospheric Environment, 2007, 41, 5101-5109.	4.1	22
306	Are methyl halides produced on all ice surfaces? Observations from snow-laden field sites. Atmospheric Environment, 2007, 41, 5162-5177.	4.1	15

#	Article	IF	CITATIONS
307	An overview of air-snow exchange at Summit, Greenland: Recent experiments and findings. Atmospheric Environment, 2007, 41, 4995-5006.	4.1	23
308	Reply to "Comment on â€~Long-term atmospheric measurements of C1–C5 alkyl nitrates in the Pearl River Delta region of southeast China'― Atmospheric Environment, 2007, 41, 7371-7372.	4.1	2
309	New Directions: Enhancing the natural sulfur cycle to slow global warming. Atmospheric Environment, 2007, 41, 7373-7375.	4.1	29
310	Late-spring increase of trans-Pacific pollution transport in the upper troposphere. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	43
311	Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China. Journal of Geophysical Research, 2006, 111, .	3.3	119
312	Inverse modeling of the global methyl chloride sources. Journal of Geophysical Research, 2006, 111, .	3.3	23
313	Halogen-driven low-altitude O3and hydrocarbon losses in spring at northern high latitudes. Journal of Geophysical Research, 2006, 111, .	3.3	40
314	Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission. Journal of Geophysical Research, 2006, 111, .	3.3	172
315	Evolution of submicron organic aerosol in polluted air exported from Tokyo. Geophysical Research Letters, 2006, 33, .	4.0	64
316	Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment. Journal of Geophysical Research, 2006, 111, .	3.3	60
317	Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai. Atmospheric Chemistry and Physics, 2006, 6, 3281-3288.	4.9	84
318	Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane. Geophysical Research Letters, 2006, 33, .	4.0	103
319	The great Centralia mine fire: A natural laboratory for the study of coal fires. , 2006, , 33-45.		11
320	Hydrocarbon emissions from a modern commercial airliner. Atmospheric Environment, 2006, 40, 3601-3612.	4.1	72
321	Long-term atmospheric measurements of C1–C5 alkyl nitrates in the Pearl River Delta region of southeast China. Atmospheric Environment, 2006, 40, 1619-1632.	4.1	49
322	Ambient halocarbon mixing ratios in 45 Chinese cities. Atmospheric Environment, 2006, 40, 7706-7719.	4.1	84
323	Volatile organic compounds in 43 Chinese cities. Atmospheric Environment, 2005, 39, 5979-5990.	4.1	345
324	Measurements of Trace Gases in the Inflow of South China Sea Background Air and Outflow of Regional Pollution at Tai O, Southern China. Journal of Atmospheric Chemistry, 2005, 52, 295-317.	3.2	95

#	Article	IF	CITATIONS
325	New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia. American Mineralogist, 2005, 90, 1729-1739.	1.9	71
326	Breath sulfides and pulmonary function in cystic fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15762-15767.	7.1	59
327	Gaseous and Particulate Emissions from Prescribed Burning in Georgia. Environmental Science & Technology, 2005, 39, 9049-9056.	10.0	207
328	Global budget of methanol: Constraints from atmospheric observations. Journal of Geophysical Research, 2005, 110, .	3.3	263
329	Contribution of particulate nitrate to airborne measurements of total reactive nitrogen. Journal of Geophysical Research, 2005, 110, .	3.3	18
330	Atomic chlorine concentrations derived from ethane and hydroxyl measurements over the equatorial Pacific Ocean: Implication for dimethyl sulfide and bromine monoxide. Journal of Geophysical Research, 2005, 110, .	3.3	66
331	Breath Ethanol and Acetone as Indicators of Serum Glucose Levels: An Initial Report. Diabetes Technology and Therapeutics, 2005, 7, 115-123.	4.4	173
332	Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8537-8541.	7.1	81
333	Impaired Glucose Tolerance, but not Impaired Fasting Glucose, Is Associated With Increased Levels of Coronary Heart Disease Risk Factors. Diabetes, 2004, 53, 2095-2100.	0.6	149
334	A reassessment of HOx South Pole chemistry based on observations recorded during ISCAT 2000. Atmospheric Environment, 2004, 38, 5451-5461.	4.1	91
335	Organic trace gases of oceanic origin observed at South Pole during ISCAT 2000. Atmospheric Environment, 2004, 38, 5463-5472.	4.1	19
336	An overview of ISCAT 2000. Atmospheric Environment, 2004, 38, 5363-5373.	4.1	54
337	Photochemistry in the Arctic Free Troposphere: Ozone Budget and Its Dependence on Nitrogen Oxides and the Production Rate of Free Radicals. Journal of Atmospheric Chemistry, 2004, 47, 107-138.	3.2	14
338	Long-term decrease in the global atmospheric burden of tetrachloroethene (C2Cl4). Geophysical Research Letters, 2004, 31, .	4.0	38
339	Long-term and seasonal variations in the levels of hydrogen peroxide, methylhydroperoxide, and selected compounds over the Pacific Ocean. Journal of Geophysical Research, 2004, 109, .	3.3	20
340	Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD. Journal of Geophysical Research, 2004, 109, .	3.3	158
341	Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. Journal of Geophysical Research, 2004, 109, .	3.3	228
342	Relationships of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China, during spring 2001. Journal of Geophysical Research, 2004, 109, .	3.3	96

#	Article	IF	CITATIONS
343	Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring. Journal of Geophysical Research, 2004, 109, .	3.3	80
344	Carbonyl sulfide and carbon disulfide: Large-scale distributions over the western Pacific and emissions from Asia during TRACE-P. Journal of Geophysical Research, 2004, 109, .	3.3	54
345	Testing fast photochemical theory during TRACE-P based on measurements of OH, HO2, and CH2O. Journal of Geophysical Research, 2004, 109, .	3.3	71
346	Long-range transport of sulfur dioxide in the central Pacific. Journal of Geophysical Research, 2004, 109, .	3.3	60
347	Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow. Journal of Geophysical Research, 2004, 109, .	3.3	40
348	Emissions from miombo woodland and dambo grassland savanna fires. Journal of Geophysical Research, 2004, 109, .	3.3	39
349	Vertical profile and origin of wintertime tropospheric ozone over China during the PEACE-A period. Journal of Geophysical Research, 2004, 109, .	3.3	15
350	Removal of NOxand NOyin Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002. Journal of Geophysical Research, 2004, 109, .	3.3	50
351	Photochemistry of ozone over the western Pacific from winter to spring. Journal of Geophysical Research, 2004, 109, .	3.3	37
352	Asian chemical outflow to the Pacific in late spring observed during the PEACE-B aircraft mission. Journal of Geophysical Research, 2004, 109, .	3.3	33
353	Airborne sampling of aerosol particles: Comparison between surface sampling at Christmas Island and P-3 sampling during PEM-Tropics B. Journal of Geophysical Research, 2003, 108, PEM 2-1.	3.3	20
354	BIBLE A whole-air sampling as a window on Asian biogeochemistry. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	4
355	Photochemical ozone budget during the BIBLE A and B campaigns. Journal of Geophysical Research, 2003, 108, BIB 8-1.	3.3	9
356	Springtime photochemical ozone production observed in the upper troposphere over east Asia. Journal of Geophysical Research, 2003, 108, BIB 2-1.	3.3	12
357	Effects of biomass burning, lightning, and convection on O3, CO, and NOyover the tropical Pacific and Australia in August–October 1998 and 1999. Journal of Geophysical Research, 2003, 108, BIB 6-1.	3.3	20
358	Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A. Journal of Geophysical Research, 2003, 108, BIB 7-1.	3.3	9
359	Emission estimates of selected volatile organic compounds from tropical savanna burning in northern Australia. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	48
360	Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia. Journal of Geophysical Research, 2003, 108, BIB 4-1.	3.3	28

#	Article	IF	CITATIONS
361	Black carbon in aerosol during BIBLE B. Journal of Geophysical Research, 2003, 108, BIB 3-1.	3.3	14
362	Vertical and meridional distributions of the atmospheric CO2mixing ratio between northern midlatitudes and southern subtropics. Journal of Geophysical Research, 2003, 108, BIB 5-1.	3.3	42
363	Central/eastern North Pacific photochemical precursor distributions for fall/spring seasons as defined by airborne field studies. Journal of Geophysical Research, 2003, 108, .	3.3	5
364	Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America from February to May 2000. Journal of Geophysical Research, 2003, 108, .	3.3	59
365	Long-range transport of Asian outflow to the equatorial Pacific. Journal of Geophysical Research, 2003, 108, PEM 5-1.	3.3	34
366	Latitudinal, vertical, and seasonal variations of C1-C4alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics A and B: Oceanic and continental sources. Journal of Geophysical Research, 2003, 108, .	3.3	80
367	Seasonal variations of C2–C4nonmethane hydrocarbons and C1–C4alkyl nitrates at the Summit research station in Greenland. Journal of Geophysical Research, 2003, 108, .	3.3	64
368	The seasonal evolution of NMHCs and light alkyl nitrates at middle to high northern latitudes during TOPSE. Journal of Geophysical Research, 2003, 108, .	3.3	50
369	Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. Journal of Geophysical Research, 2003, 108, TOP 4-1.	3.3	75
370	Characteristics of biomass burning emission sources, transport, and chemical speciation in enhanced springtime tropospheric ozone profile over Hong Kong. Journal of Geophysical Research, 2003, 108, ACH 3-1.	3.3	82
371	Steady state free radical budgets and ozone photochemistry during TOPSE. Journal of Geophysical Research, 2003, 108, .	3.3	57
372	Seasonal changes in the transport of pollutants into the Arctic troposphere-model study. Journal of Geophysical Research, 2003, 108, .	3.3	150
373	Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons. Journal of Geophysical Research, 2003, 108, .	3.3	62
374	Springtime photochemistry at northern mid and high latitudes. Journal of Geophysical Research, 2003, 108, .	3.3	49
375	Emissions of trace gases and particles from savanna fires in southern Africa. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	153
376	Evolution of gases and particles from a savanna fire in South Africa. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	208
377	Removal of NOxand NOyin biomass burning plumes in the boundary layer over northern Australia. Journal of Geophysical Research, 2003, 108, .	3.3	18
378	Coupled evolution of BrOx-ClOx-HOx-NOxchemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer. Journal of Geophysical Research, 2003, 108, .	3.3	82

#	Article	IF	CITATIONS
379	Gaseous emissions from flooded rice paddy agriculture. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	27
380	Photochemical production and evolution of selected C2–C5alkyl nitrates in tropospheric air influenced by Asian outflow. Journal of Geophysical Research, 2003, 108, .	3.3	53
381	Survey of whole air data from the second airborne Biomass Burning and Lightning Experiment using principal component analysis. Journal of Geophysical Research, 2003, 108, .	3.3	18
382	In situ measurements of HCN and CH3CN over the Pacific Ocean: Sources, sinks, and budgets. Journal of Geophysical Research, 2003, 108, .	3.3	146
383	Large-scale distribution of CH4in the western North Pacific: Sources and transport from the Asian continent. Journal of Geophysical Research, 2003, 108, .	3.3	21
384	Biomass burning emission inventory with daily resolution: Application to aircraft observations of Asian outflow. Journal of Geophysical Research, 2003, 108, .	3.3	100
385	Influence of regional-scale anthropogenic emissions on CO2distributions over the western North Pacific. Journal of Geophysical Research, 2003, 108, .	3.3	65
386	Impacts of aerosols and clouds on photolysis frequencies and photochemistry during TRACE-P: 2. Three-dimensional study using a regional chemical transport model. Journal of Geophysical Research, 2003, 108, .	3.3	84
387	Role of wave cyclones in transporting boundary layer air to the free troposphere during the spring 2001 NASA/TRACE-P experiment. Journal of Geophysical Research, 2003, 108, .	3.3	37
388	Influences of biomass burning during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment identified by the regional chemical transport model. Journal of Geophysical Research, 2003, 108, .	3.3	65
389	Evaluating regional emission estimates using the TRACE-P observations. Journal of Geophysical Research, 2003, 108, .	3.3	158
390	Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment. Journal of Geophysical Research, 2003, 108, .	3.3	182
391	Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment. Journal of Geophysical Research, 2003, 108, .	3.3	95
392	Reactive nitrogen in Asian continental outflow over the western Pacific: Results from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission. Journal of Geophysical Research, 2003, 108, .	3.3	54
393	Clouds and trace gas distributions during TRACE-P. Journal of Geophysical Research, 2003, 108, .	3.3	27
394	Chemical composition of Asian continental outflow over the western Pacific: Results from Transport and Chemical Evolution over the Pacific (TRACE-P). Journal of Geophysical Research, 2003, 108, .	3.3	69
395	Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACE-P experiment. Journal of Geophysical Research, 2003, 108, .	3.3	68
396	An assessment of western North Pacific ozone photochemistry based on springtime observations from NASA's PEM-West B (1994) and TRACE-P (2001) field studies. Journal of Geophysical Research, 2003, 108, .	3.3	35

#	Article	IF	CITATIONS
397	Synoptic-scale transport of reactive nitrogen over the western Pacific in spring. Journal of Geophysical Research, 2003, 108, .	3.3	73
398	Airborne measurement of inorganic ionic components of fine aerosol particles using the particle-into-liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P. Journal of Geophysical Research, 2003, 108, .	3.3	71
399	Chemical characterization of the boundary layer outflow of air pollution to Hong Kong during February–April 2001. Journal of Geophysical Research, 2003, 108, .	3.3	101
400	Export of anthropogenic reactive nitrogen and sulfur compounds from the East Asia region in spring. Journal of Geophysical Research, 2003, 108, .	3.3	78
401	Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring. Journal of Geophysical Research, 2003, 108, .	3.3	46
402	NMHCs and halocarbons in Asian continental outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) Field Campaign: Comparison With PEM-West B. Journal of Geophysical Research, 2003, 108, .	3.3	171
403	Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia. Geophysical Research Letters, 2003, 30, .	4.0	63
404	Photochemical production of O3in biomass burning plumes in the boundary layer over northern Australia. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	25
405	Airborne measurements of cirrusâ€activated C 2 Cl 4 depletion in the upper troposphere with evidence against Cl reactions. Geophysical Research Letters, 2003, 30, .	4.0	3
406	Unexplained enhancements of CH3Br in the Arctic and sub-Arctic lower troposphere during TOPSE spring 2000. Geophysical Research Letters, 2003, 30, .	4.0	14
407	Highlights of OH, H2SO4, and methane sulfonic acid measurements made aboard the NASA P-3B during Transport and Chemical Evolution over the Pacific. Journal of Geophysical Research, 2003, 108, .	3.3	36
408	Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons. Journal of Geophysical Research, 2003, 108, .	3.3	68
409	Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	196
410	Eastern Asian emissions of anthropogenic halocarbons deduced from aircraft concentration data. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	67
411	Intercontinental transport of pollution manifested in the variability and seasonal trend of springtime O3at northern middle and high latitudes. Journal of Geophysical Research, 2003, 108, .	3.3	22
412	Peroxy radical behavior during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign as measured aboard the NASA P-3B aircraft. Journal of Geophysical Research, 2003, 108, .	3.3	44
413	Distributions of trace gases and aerosols during the dry biomass burning season in southern Africa. Journal of Geophysical Research, 2003, 108, .	3.3	44
414	Comparative Oxidation and Net Emissions of Methane and Selected Non-Methane Organic Compounds in Landfill Cover Soils. Environmental Science & Technology, 2003, 37, 5150-5158.	10.0	111

#	Article	IF	CITATIONS
415	Sources of upper tropospheric HOxover the South Pacific Convergence Zone: A case study. Journal of Geophysical Research, 2003, 108, PEM 1-1.	3.3	5
416	Extensive regional atmospheric hydrocarbon pollution in the southwestern United States. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11975-11979.	7.1	129
417	On the variability of tropospheric gases: Sampling, loss patterns, and lifetime. Journal of Geophysical Research, 2002, 107, ACH 4-1-ACH 4-10.	3.3	5
418	Emission characteristics of CO, NOx, SO2and indications of biomass burning observed at a rural site in eastern China. Journal of Geophysical Research, 2002, 107, ACH 9-1.	3.3	133
419	A biomass burning source of C1-C4alkyl nitrates. Geophysical Research Letters, 2002, 29, 21-1-21-4.	4.0	38
420	Implications of the recent fluctuations in the growth rate of tropospheric methane. Geophysical Research Letters, 2002, 29, 117-1-117-4.	4.0	62
421	Photochemically induced production of CH3Br, CH3I, C2H5I, ethene, and propene within surface snow at Summit, Greenland. Atmospheric Environment, 2002, 36, 2671-2682.	4.1	92
422	Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmospheric Environment, 2002, 36, 3429-3443.	4.1	204
423	Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico. Environmental Science and Policy, 2002, 5, 449-461.	4.9	13
424	Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models. Journal of Geophysical Research, 2002, 107, ACH 8-1-ACH 8-12.	3.3	152
425	Compensation of atmospheric CO2buildup through engineered chemical sinkage. Geophysical Research Letters, 2001, 28, 1235-1238.	4.0	43
426	Chemical transport across the ITCZ in the central Pacific during an El Niño-Southern Oscillation cold phase event in March-April 1999. Journal of Geophysical Research, 2001, 106, 32539-32553.	3.3	35
427	Correction to "Observations of ozone and related species in the northeast Pacific during the PHOBEA campaigns: 2. Airborne observations―by Robert A. Kotchenruther et al Journal of Geophysical Research, 2001, 106, 20507-20508.	3.3	1
428	Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment. Journal of Geophysical Research, 2001, 106, 32481-32501.	3.3	43
429	Experimental evidence for the importance of convected methylhydroperoxide as a source of hydrogen oxide (HOx) radicals in the tropical upper troposphere. Journal of Geophysical Research, 2001, 106, 32709-32716.	3.3	44
430	Formaldehyde over the central Pacific during PEM-Tropics B. Journal of Geophysical Research, 2001, 106, 32717-32731.	3.3	33
431	Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B. Journal of Geophysical Research, 2001, 106, 32749-32766.	3.3	64
432	Factors controlling tropospheric O3, OH, NOxand SO2over the tropical Pacific during PEM-Tropics B. Journal of Geophysical Research, 2001, 106, 32733-32747.	3.3	38

#	Article	IF	CITATIONS
433	Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B). Journal of Geophysical Research, 2001, 106, 32609-32625.	3.3	20
434	Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models. Journal of Geophysical Research, 2001, 106, 32691-32707.	3.3	30
435	Impact of the leakage of liquefied petroleum gas (LPG) on Santiago Air Quality. Geophysical Research Letters, 2001, 28, 2193-2196.	4.0	53
436	Observations of ozone and related species in the northeast Pacific during the PHOBEA campaigns: 2. Airborne observations. Journal of Geophysical Research, 2001, 106, 7463-7483.	3.3	48
437	Bromine oxide-ozone interaction over the Dead Sea. Journal of Geophysical Research, 2001, 106, 10375-10387.	3.3	74
438	Observations of ozone and related species in the northeast Pacific during the PHOBEA campaigns: 1. Ground-based observations at Cheeka Peak. Journal of Geophysical Research, 2001, 106, 7449-7461.	3.3	79
439	Large-scale latitudinal and vertical distributions of NMHCs and selected halocarbons in the troposphere over the Pacific Ocean during the March-April 1999 Pacific Exploratory Mission (PEM-Tropics B). Journal of Geophysical Research, 2001, 106, 32627-32644.	3.3	63
440	An investigation of South Pole HOxchemistry: Comparison of model results with ISCAT observations. Geophysical Research Letters, 2001, 28, 3633-3636.	4.0	61
441	Description of the Analysis of a Wide Range of Volatile Organic Compounds in Whole Air Samples Collected during PEM-Tropics A and B. Analytical Chemistry, 2001, 73, 3723-3731.	6.5	309
442	Aircraft Measurements of Dimethyl Sulfide (DMS) Using a Whole Air Sampling Technique. Journal of Atmospheric Chemistry, 2001, 39, 191-213.	3.2	24
443	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 317-344.	3.2	24
444	Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature, 2001, 410, 1078-1081.	27.8	364
445	Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmospheric Environment, 2001, 35, 135-149.	4.1	243
446	Biomass burning influences on the composition of the remote South Pacific troposphere: analysis based on observations from PEM-Tropics-A. Atmospheric Environment, 2000, 34, 635-644.	4.1	50
447	ENERGY ANDMATERIALFLOWTHROUGH THEURBANECOSYSTEM. Annual Review of Environment and Resources, 2000, 25, 685-740.	1.2	302
448	Evolution and chemical consequences of lightning-produced NOxobserved in the North Atlantic upper troposphere. Journal of Geophysical Research, 2000, 105, 19795-19809.	3.3	27
449	Evidence of convection as a major source of condensation nuclei in the northern midlatitude upper troposphere. Geophysical Research Letters, 2000, 27, 369-372.	4.0	32
450	Nonmethane hydrocarbon measurements in the North Atlantic Flight Corridor during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment. Journal of Geophysical Research, 2000, 105, 3785-3793.	3.3	11

#	Article	IF	CITATIONS
451	Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic. Journal of Geophysical Research, 2000, 105, 3795-3805.	3.3	257
452	Impact of aircraft emissions on reactive nitrogen over the North Atlantic Flight Corridor region. Journal of Geophysical Research, 2000, 105, 3665-3677.	3.3	26
453	Photochemistry of HOxin the upper troposphere at northern midlatitudes. Journal of Geophysical Research, 2000, 105, 3877-3892.	3.3	173
454	A case study of transport of tropical marine boundary layer and lower tropospheric air masses to the northern midlatitude upper troposphere. Journal of Geophysical Research, 2000, 105, 3757-3769.	3.3	37
455	Tropospheric reactive odd nitrogen over the South Pacific in austral springtime. Journal of Geophysical Research, 2000, 105, 6681-6694.	3.3	42
456	Influence of convection and biomass burning outflow on tropospheric chemistry over the tropical Pacific. Journal of Geophysical Research, 2000, 105, 9321-9333.	3.3	15
457	Fueling Asian modernization. Environmental Science and Policy, 1999, 2, 5-8.	4.9	3
458	Rapid industrialization in developing countries: the challenge to earth system research for the new millennium. Atmospheric Environment, 1999, 33, 683-684.	4.1	4
459	Airborne observations of the tropospheric CO2distribution and its controlling factors over the South Pacific Basin. Journal of Geophysical Research, 1999, 104, 5663-5676.	3.3	43
460	Convective injection and photochemical decay of peroxides in the tropical upper troposphere: Methyl iodide as a tracer of marine convection. Journal of Geophysical Research, 1999, 104, 5717-5724.	3.3	110
461	On the origin of tropospheric ozone and NOxover the tropical South Pacific. Journal of Geophysical Research, 1999, 104, 5829-5843.	3.3	140
462	Estimation of global vehicular methyl bromide emissions: Extrapolation from a case study in Santiago, Chile. Geophysical Research Letters, 1999, 26, 283-286.	4.0	20
463	Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics. Journal of Geophysical Research, 1999, 104, 5785-5800.	3.3	52
464	Dimethyl sulfide oxidation in the equatorial Pacific: Comparison of model simulations with field observations for DMS, SO2, H2SO4(g), MSA(g), MS and NSS. Journal of Geophysical Research, 1999, 104, 5765-5784.	3.3	107
465	Use of a mixed-layer model to estimate dimethylsulfide flux and application to other trace gas fluxes. Journal of Geophysical Research, 1999, 104, 16275-16295.	3.3	20
466	Transport of Asian air pollution to North America. Geophysical Research Letters, 1999, 26, 711-714.	4.0	534
467	Rethinking reactive halogen budgets in the midlatitude lower stratosphere. Geophysical Research Letters, 1999, 26, 1699-1702.	4.0	110
468	Ozone production in the upper troposphere and the influence of aircraft during SONEX: approach of NOx-saturated conditions. Geophysical Research Letters, 1999, 26, 3081-3084.	4.0	53

#	Article	IF	CITATIONS
469	OH and HO2chemistry in the North Atlantic free troposphere. Geophysical Research Letters, 1999, 26, 3077-3080.	4.0	67
470	Reactive nitrogen budget during the NASA SONEX Mission. Geophysical Research Letters, 1999, 26, 3057-3060.	4.0	53
471	Chemical characteristics of air from differing source regions during the Pacific Exploratory Mission-Tropics A (PEM-Tropics A). Journal of Geophysical Research, 1999, 104, 16181-16196.	3.3	27
472	Stable carbon isotopic composition of atmospheric methane: A comparison of surface level and free tropospheric air. Journal of Geophysical Research, 1999, 104, 13895-13910.	3.3	47
473	Influence of southern hemispheric biomass burning on midtropospheric distributions of nonmethane hydrocarbons and selected halocarbons over the remote South Pacific Journal of Geophysical Research, 1999, 104, 16213-16232.	3.3	64
474	Assessment of upper tropospheric HOxsources over the tropical Pacific based on NASA GTE/PEM data: Net effect on HOxand other photochemical parameters. Journal of Geophysical Research, 1999, 104, 16255-16273.	3.3	123
475	Characterization of the chemical signatures of air masses observed during the PEM experiments over the western Pacific. Journal of Geophysical Research, 1999, 104, 16243-16254.	3.3	25
476	Trace gas mixing ratio variability versus lifetime in the troposphere and stratosphere: Observations. Journal of Geophysical Research, 1999, 104, 16091-16113.	3.3	86
477	Distributions of brominated organic compounds in the troposphere and lower stratosphere. Journal of Geophysical Research, 1999, 104, 21513-21535.	3.3	179
478	Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales determined from hydrocarbon and halocarbon measurements made over the Southern Ocean. Journal of Geophysical Research, 1999, 104, 21819-21828.	3.3	122
479	Aircraft measurements of the latitudinal, vertical, and seasonal variations of NMHCs, methyl nitrate, methyl halides, and DMS during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1999, 104, 21803-21817.	3.3	88
480	An examination of chemistry and transport processes in the tropical lower stratosphere using observations of long-lived and short-lived compounds obtained during STRAT and POLARIS. Journal of Geophysical Research, 1999, 104, 26625-26642.	3.3	62
481	Spatial and temporal variability of nonmethane hydrocarbon mixing ratios and their relation to photochemical lifetime. Journal of Geophysical Research, 1998, 103, 13557-13567.	3.3	90
482	Distribution of halon-1211 in the upper troposphere and lower stratosphere and the 1994 total bromine budget. Journal of Geophysical Research, 1998, 103, 1513-1526.	3.3	131
483	Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic. Journal of Geophysical Research, 1998, 103, 8401-8423.	3.3	204
484	Seasonal variation of tropospheric methyl bromide concentrations: Constraints on anthropogenic input. Geophysical Research Letters, 1998, 25, 2797-2800.	4.0	24
485	Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive. Journal of Geophysical Research, 1998, 103, 13531-13555.	3.3	18
486	Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. Journal of Geophysical Research, 1998, 103, 32059-32080.	3.3	432

#	Article	IF	CITATIONS
487	Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research, 1998, 103, 32107-32118.	3.3	305
488	Physico-chemical modeling of the First Aerosol Characterization Experiment (ACE 1) Lagrangian B: 1. A moving column approach. Journal of Geophysical Research, 1998, 103, 16433-16455.	3.3	53
489	On the use of hydrocarbons for the determination of tropospheric OH concentrations. Journal of Geophysical Research, 1998, 103, 18981-18997.	3.3	70
490	Global atmospheric distributions and source strengths of light hydrocarbons and tetrachloroethene. Journal of Geophysical Research, 1998, 103, 28219-28235.	3.3	47
491	Atmospheric Residence Time of CH3Br Estimated from the Junge Spatial Variability Relation. , 1998, 281, 392-396.		27
492	Ventilation of liquefied petroleum gas components from the Valley of Mexico. Journal of Geophysical Research, 1997, 102, 21197-21207.	3.3	16
493	Impact of lightning and convection on reactive nitrogen in the tropical free troposphere. Journal of Geophysical Research, 1997, 102, 28367-28384.	3.3	21
494	Chemical characteristics of tropospheric air over the Pacific Ocean as measured during PEM-West B: Relationship to Asian outflow and trajectory history. Journal of Geophysical Research, 1997, 102, 28275-28285.	3.3	38
495	Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM-West A and PEM-West B. Journal of Geophysical Research, 1997, 102, 28315-28331.	3.3	123
496	An assessment of ozone photochemistry in the extratropical western North Pacific: Impact of continental outflow during the late winter/early spring. Journal of Geophysical Research, 1997, 102, 28469-28487.	3.3	83
497	Motorization of China implies changes in Pacific air chemistry and primary production. Geophysical Research Letters, 1997, 24, 2671-2674.	4.0	54
498	Trace chemical measurements from the northern midlatitude lowermost stratosphere in early spring: Distributions, correlations, and fate. Geophysical Research Letters, 1997, 24, 127-130.	4.0	51
499	Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994: Results from PEM-West B. Journal of Geophysical Research, 1997, 102, 28255-28274.	3.3	115
500	Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime. Journal of Geophysical Research, 1997, 102, 28303-28313.	3.3	68
501	Profiles and partitioning of reactive nitrogen over the Pacific Ocean in winter and early spring. Journal of Geophysical Research, 1997, 102, 28405-28424.	3.3	68
502	Title is missing!. Journal of Atmospheric Chemistry, 1997, 27, 31-70.	3.2	21
503	High-Latitude Springtime Photochemistry. Part Ii: Sensitivity Studies of Ozone Production. Journal of Atmospheric Chemistry, 1997, 27, 155-178.	3.2	19
504	Chemical signatures of aged Pacific marine air: Mixed layer and free troposphere as measured during PFM-West A Journal of Geophysical Research, 1996, 101, 1727-1742	3.3	61

#	Article	IF	CITATIONS
505	Low ozone in the marine boundary layer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and entrainment. Journal of Geophysical Research, 1996, 101, 1907-1917.	3.3	156
506	Reactive nitrogen and ozone over the western Pacific: Distribution, partitioning, and sources. Journal of Geophysical Research, 1996, 101, 1793-1808.	3.3	171
507	Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during September-October 1991: Results from PEM-West A. Journal of Geophysical Research, 1996, 101, 1713-1725.	3.3	75
508	Hydrogen peroxide and methylhydroperoxide distributions related to ozone and odd hydrogen over the North Pacific in the fall of 1991. Journal of Geophysical Research, 1996, 101, 1891-1905.	3.3	74
509	Nonmethane hydrocarbon and halocarbon distributions during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange, June 1992. Journal of Geophysical Research, 1996, 101, 4501-4514.	3.3	56
510	Atmospheric sampling of Supertyphoon Mireille with NASA DC-8 aircraft on September 27,1991, during PEM-West A. Journal of Geophysical Research, 1996, 101, 1853-1871.	3.3	53
511	TRACE A trajectory intercomparison: 2. Isentropic and kinematic methods. Journal of Geophysical Research, 1996, 101, 23927-23939.	3.3	73
512	Large-scale air mass characteristics observed over western Pacific during summertime. Journal of Geophysical Research, 1996, 101, 1691-1712.	3.3	77
513	Photostationary state analysis of the NO2-NO system based on airborne observations from the western and central North Pacific. Journal of Geophysical Research, 1996, 101, 2053-2072.	3.3	91
514	Model study of tropospheric trace species distributions during PEM-West A. Journal of Geophysical Research, 1996, 101, 2073-2085.	3.3	76
515	Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights. Journal of Geophysical Research, 1996, 101, 4331-4340.	3.3	303
516	Three-dimensional distribution of nonmenthane hydrocarbons and halocarbons over the northwestern Pacific during the 1991 Pacific Exploratory Mission (PEM-West A). Journal of Geophysical Research, 1996, 101, 1763-1778.	3.3	130
517	Potential impact of iodine on tropospheric levels of ozone and other critical oxidants. Journal of Geophysical Research, 1996, 101, 2135-2147.	3.3	256
518	Hydrocarbon ratios during PEM-WEST A: A model perspective. Journal of Geophysical Research, 1996, 101, 2087-2109.	3.3	144
519	Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991. Journal of Geophysical Research, 1996, 101, 2111-2134.	3.3	147
520	PEM-West A: Meteorological overview. Journal of Geophysical Research, 1996, 101, 1655-1677.	3.3	48
521	Comparison of free tropospheric western Pacific air mass classification schemes for the PEM-West A experiment. Journal of Geophysical Research, 1996, 101, 1743-1762.	3.3	87
522	Origin of tropospheric ozone at remote high northern latitudes in summer. Journal of Geophysical Research, 1996, 101, 4175-4188.	3.3	84

#	Article	IF	CITATIONS
523	Chemical characteristics of continental outflow over the tropical South Atlantic Ocean from Brazil and Africa. Journal of Geophysical Research, 1996, 101, 24187-24202.	3.3	75
524	Factors influencing the upper free tropospheric distribution of reactive nitrogen over the South Atlantic during the TRACE A experiment. Journal of Geophysical Research, 1996, 101, 24165-24186.	3.3	63
525	Origin of ozone and NOxin the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin. Journal of Geophysical Research, 1996, 101, 24235-24250.	3.3	335
526	Measurements of PAN, alkyl nitrates, ozone, and hydrocarbons during spring in interior Alaska. Journal of Geophysical Research, 1996, 101, 12613-12619.	3.3	42
527	Convective transport of biomass burning emissions over Brazil during TRACE A. Journal of Geophysical Research, 1996, 101, 23993-24012.	3.3	253
528	Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region. Journal of Geophysical Research, 1996, 101, 24151-24164.	3.3	186
529	Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts. Journal of Geophysical Research, 1996, 101, 24117-24137.	3.3	143
530	Impact of biomass burning emissions on the composition of the South Atlantic troposphere: Reactive nitrogen and ozone. Journal of Geophysical Research, 1996, 101, 24203-24219.	3.3	61
531	Chemical characteristics of tropospheric air over the tropical South Atlantic Ocean: Relationship to trajectory history. Journal of Geophysical Research, 1996, 101, 23957-23972.	3.3	32
532	Seasonal variations in the atmospheric distribution of a reactive chlorine compound, tetrachloroethene (CCl2=CCl2). Geophysical Research Letters, 1995, 22, 1097-1100.	4.0	69
533	Urban Leakage of Liquefied Petroleum Gas and Its Impact on Mexico City Air Quality. Science, 1995, 269, 953-956.	12.6	286
534	O3, NOy, and NOx/NOyin the upper troposphere of the equatorial Pacific. Journal of Geophysical Research, 1995, 100, 20913.	3.3	16
535	Acetone in the atmosphere: Distribution, sources, and sinks. Journal of Geophysical Research, 1994, 99, 1805.	3.3	340
536	Summertime distribution of PAN and other reactive nitrogen species in the northern high-latitude atmosphere of eastern Canada. Journal of Geophysical Research, 1994, 99, 1821.	3.3	67
537	Enhancement of acidic gases in biomass burning impacted air masses over Canada. Journal of Geophysical Research, 1994, 99, 1721.	3.3	83
538	Effects of biomass burning on summertime nonmethane hydrocarbon concentrations in the Canadian wetlands. Journal of Geophysical Research, 1994, 99, 1699.	3.3	124
539	Meridional distributions of NOx, NOy, and other species in the lower stratosphere and upper troposphere during AASE II. Geophysical Research Letters, 1994, 21, 2583-2586.	4.0	103
540	Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3. Journal of Geophysical Research, 1994, 99, 12793.	3.3	163

#	Article	IF	CITATIONS
541	Origin of tropospheric NOxover subarctic eastern Canada in summer. Journal of Geophysical Research, 1994, 99, 16867.	3.3	78
542	AASEâ€II Observations of trace carbon species distributions in the mid to upper troposphere. Geophysical Research Letters, 1993, 20, 2539-2542.	4.0	28
543	Atmospheric measurements of peroxyacetyl nitrate and other organic nitrates at high latitudes: Possible sources and sinks. Journal of Geophysical Research, 1992, 97, 16511-16522.	3.3	96
544	Summertime photochemistry of the troposphere at high northern latitudes. Journal of Geophysical Research, 1992, 97, 16421-16431.	3.3	127
545	Atmospheric chemistry in the Arctic and subarctic: Influence of natural fires, industrial emissions, and stratospheric inputs. Journal of Geophysical Research, 1992, 97, 16731-16746.	3.3	120
546	Summertime measurements of selected nonmethane hydrocarbons in the Arctic and Subarctic during the 1988 Arctic Boundary Layer Expedition (ABLE 3A). Journal of Geophysical Research, 1992, 97, 16559-16588.	3.3	80
547	Trace gases in the atmospehre: Temporal and spatial trends. AIP Conference Proceedings, 1992, , .	0.4	1
548	Methane in cities. Nature, 1990, 347, 432-433.	27.8	14
549	Continuing Worldwide Increase in Tropospheric Methane, 1978 to 1987. Science, 1988, 239, 1129-1131.	12.6	424
550	¹³ C/ ¹² C ratio in methane from the flooded Amazon forest. Journal of Geophysical Research, 1987, 92, 1044-1048.	3.3	26
551	World-wide increase in tropospheric methane, 1978?1983. Journal of Atmospheric Chemistry, 1986, 4, 43-62.	3.2	96
552	Global atmospheric concentrations and source strength of ethane. Nature, 1986, 321, 231-233.	27.8	114
553	World-Wide Increase in Tropospheric Methane, 1978–1983. , 1986, , 241-260.		0
554	methane concentrations and source strengths in urban locations. Geophysical Research Letters, 1984, 11, 1211-1214.	4.0	30
555	Methane: Interhemispheric concentration gradient and atmospheric residence time. Proceedings of the United States of America, 1982, 79, 1366-1370.	7.1	52
556	Global increase in atmospheric methane concentrations between 1978 and 1980. Geophysical Research Letters, 1982, 9, 477-480.	4.0	150
557	Constraining Emission Estimates of CFC-11 in Eastern China Based on Local Observations at Surface Stations and Mount Tai. Environmental Science and Technology Letters, 0, , .	8.7	4
558	Hydrocarbon Tracers Suggest Methane Emissions from Fossil Sources Occur Predominately Before Gas Processing and That Petroleum Plays Are a Significant Source. Environmental Science & Technology, 0, , .	10.0	3