Alexander Graphodatsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6358774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance and automation of ancient DNA capture with RNA hyRAD probes. Molecular Ecology Resources, 2022, 22, 891-907.	4.8	11
2	Phylogeography of ancient and modern brown bears from eastern Eurasia. Biological Journal of the Linnean Society, 2022, 135, 722-733.	1.6	4
3	Evolution of Tandemly Arranged Repetitive DNAs in Three Species of Cyprinoidei with Different Ploidy Levels. Cytogenetic and Genome Research, 2021, 161, 32-42.	1.1	3
4	Traces of Late Bronze and Early Iron Age Mongolian Horse Mitochondrial Lineages in Modern Populations. Genes, 2021, 12, 412.	2.4	7
5	Demographic History, Adaptation, and NRAP Convergent Evolution at Amino Acid Residue 100 in the World Northernmost Cattle from Siberia. Molecular Biology and Evolution, 2021, 38, 3093-3110.	8.9	27
6	Karyotypic and molecular evidence supports the endemic Tibetan hamsters as a separate divergent lineage of Cricetinae. Scientific Reports, 2021, 11, 10557.	3.3	2
7	New Data on Comparative Cytogenetics of the Mouse-Like Hamsters (Calomyscus Thomas, 1905) from Iran and Turkmenistan. Genes, 2021, 12, 964.	2.4	6
8	Draft de novo Genome Assembly of the Elusive Jaguarundi, Puma yagouaroundi. Journal of Heredity, 2021, 112, 540-548.	2.4	5
9	The origins and spread of domestic horses from the Western Eurasian steppes. Nature, 2021, 598, 634-640.	27.8	142
10	Evolutionary rearrangements of X chromosomes in voles (Arvicolinae, Rodentia). Scientific Reports, 2020, 10, 13235.	3.3	5
11	Karyotype Evolution in 10 Pinniped Species: Variability of Heterochromatin versus High Conservatism of Euchromatin as Revealed by Comparative Molecular Cytogenetics. Genes, 2020, 11, 1485.	2.4	8
12	Complex Structure of Lasiopodomys mandarinus vinogradovi Sex Chromosomes, Sex Determination, and Intraspecific Autosomal Polymorphism. Genes, 2020, 11, 374.	2.4	9
13	High genetic diversity of ancient horses from the Ukok Plateau. PLoS ONE, 2020, 15, e0241997.	2.5	6
14	Genome Diversity and Evolution. Vestnik RFFI, 2020, , 38-49.	0.1	0
15	Chromosomes of the Indian Muntjac (Muntiacus muntjak): Comeback. Cell and Tissue Biology, 2020, 14, 407-412.	0.4	2
16	First report on B chromosome content in a reptilian species: the case of Anolis carolinensis. Molecular Genetics and Genomics, 2019, 294, 13-21.	2.1	11
17	An integrated chromosome-scale genome assembly of the Masai giraffe (Giraffa camelopardalis) Tj ETQq1 1 0.7	84314 rgB 6.4	T /Oyerlock 1

18 Precision nomenclature for the new genomics. GigaScience, 2019, 8, .

6.4 23

#	Article	IF	CITATIONS
19	Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Research, 2019, 29, 576-589.	5.5	39
20	Comparative Chromosome Mapping of Musk Ox and the X Chromosome among Some Bovidae Species. Genes, 2019, 10, 857.	2.4	8
21	Chromosome Translocations as a Driver of Diversification in Mole Voles Ellobius (Rodentia,) Tj ETQq1 1 0.78431	4 rgBT /Ov 4.1	erlock 10 Tf 3
22	Population genetic structure and phylogeography of sterlet (<i>Acipenser ruthenus</i> ,) Tj ETQq0 0 0 rgBT /Ove and Analysis, 2019, 30, 156-164.	rlock 10 T 0.7	f 50 627 Td (/ 5
23	Low-pass single-chromosome sequencing of human small supernumerary marker chromosomes (sSMCs) and Apodemus B chromosomes. Chromosoma, 2018, 127, 301-311.	2.2	18
24	Alteration of rRNA gene copy number and expression in patients with intellectual disability and heteromorphic acrocentric chromosomes. Egyptian Journal of Medical Human Genetics, 2018, 19, 129-134.	1.0	6
25	Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annual Review of Animal Biosciences, 2018, 6, 23-46.	7.4	166
26	Multiple intrasyntenic rearrangements and rapid speciation in voles. Scientific Reports, 2018, 8, 14980.	3.3	11
27	A combined banding method that allows the reliable identification of chromosomes as well as differentiation of AT- and GC-rich heterochromatin. Chromosome Research, 2018, 26, 307-315.	2.2	19
28	B Chromosomes of the Asian Seabass (Lates calcarifer) Contribute to Genome Variations at the Level of Individuals and Populations. Genes, 2018, 9, 464.	2.4	11
29	Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nature Ecology and Evolution, 2018, 2, 1479-1491.	7.8	113
30	The Case of X and Y Localization of Nucleolus Organizer Regions (NORs) in Tragulus javanicus (Cetartiodactyla, Mammalia). Genes, 2018, 9, 312.	2.4	7
31	Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes. Genes, 2018, 9, 405.	2.4	22
32	Naked mole rat cells display more efficient excision repair than mouse cells. Aging, 2018, 10, 1454-1473.	3.1	38
33	Overexpression of rRNA genes in a patient with intellectual disability and familial 13p+ chromosome. Bulletin of Siberian Medicine, 2018, 17, 243-253.	0.3	0
34	Complete mitochondrial genome of an extinct <i>Equus (Sussemionus) ovodovi</i> specimen from Denisova cave (Altai, Russia). Mitochondrial DNA Part B: Resources, 2017, 2, 79-81.	0.4	10
35	Genomic Organization and Physical Mapping of Tandemly Arranged Repetitive DNAs in Sterlet (<i>Acipenser ruthenus</i>). Cytogenetic and Genome Research, 2017, 152, 148-157.	1.1	30
36	De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus. BMC Evolutionary Biology, 2017, 17, 258.	3.2	11

#	Article	IF	CITATIONS
37	Intrachromosomal Rearrangements in Rodents from the Perspective of Comparative Region-Specific Painting. Genes, 2017, 8, 215.	2.4	12
38	X Chromosome Evolution in Cetartiodactyla. Genes, 2017, 8, 216.	2.4	24
39	Next Generation Sequencing of Chromosome-Specific Libraries Sheds Light on Genome Evolution in Paleotetraploid Sterlet (Acipenser ruthenus). Genes, 2017, 8, 318.	2.4	12
40	Animal Probes and ZOO-FISH. Springer Protocols, 2017, , 395-415.	0.3	3
41	The Ancestral Carnivore Karyotype As Substantiated by Comparative Chromosome Painting of Three Pinnipeds, the Walrus, the Steller Sea Lion and the Baikal Seal (Pinnipedia, Carnivora). PLoS ONE, 2016, 11, e0147647.	2.5	15
42	Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome – Sex Chromosome Translocations. PLoS ONE, 2016, 11, e0167653.	2.5	19
43	Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genomics, 2016, 17, 618.	2.8	47
44	Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea). Cytogenetic and Genome Research, 2016, 148, 25-34.	1.1	13
45	Evolutionary plasticity of acipenseriform genomes. Chromosoma, 2016, 125, 661-668.	2.2	31
46	Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA. Molecular Genetics and Genomics, 2016, 291, 1955-1966.	2.1	30
47	Genome-wide comparative chromosome maps of Arvicola amphibius, Dicrostonyx torquatus, and Myodes rutilus. Chromosome Research, 2016, 24, 145-159.	2.2	9
48	GENOTYPING AND COAT COLOUR DETECTION OF ANCIENT HORSES FROM BURYATIA. Tsitologiya, 2016, 58, 304-8.	0.2	2
49	A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans. PLoS ONE, 2015, 10, e0127937.	2.5	14
50	Ancient DNA: Results and prospects (The 30th anniversary). Russian Journal of Genetics, 2015, 51, 529-544.	0.6	1
51	Chromosome Polymorphism in <i>Microtus(Alexandromys)</i><i (Arvicolinae, Rodentia). Cytogenetic and Genome Research, 2015, 146, 238-242.</i 	.gt;mujan	ensis
52	Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Molecular Cytogenetics, 2015, 8, 90.	0.9	68
53	Genes on B chromosomes of vertebrates. Molecular Cytogenetics, 2014, 7, 99.	0.9	40
54	A New Case of an Inherited Reciprocal Translocation in Cattle: rcp(13;26)(q24;q11). Cytogenetic and Genome Research, 2014, 144, 208-211.	1.1	2

#	Article	IF	CITATIONS
55	Comparative chromosome painting of pronghorn (Antilocapra americana) and saola (Pseudoryx) Tj ETQq1 1 0.78	4314 rgBT 2.7	/Overlock 1
56	Molecular cytogenetic insights to the phylogenetic affinities of the giraffe (Giraffa camelopardalis) and pronghorn (Antilocapra americana). Chromosome Research, 2013, 21, 447-460.	2.2	17
57	Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs. Science, 2013, 342, 871-874.	12.6	438
58	Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus) Tj ETQq0 0 0 rgBT	/Qverlock 3.8	10 Tf 50 62
59	Comparative Cytogenetics of Hamsters of the Genus <i>Allocricetulus </i> Argyropulo 1932 (Cricetidae, Rodentia). Cytogenetic and Genome Research, 2013, 139, 258-266.	1.1	8
60	Ancient DNA Analysis Affirms the Canid from Altai as a Primitive Dog. PLoS ONE, 2013, 8, e57754.	2.5	81
61	A new form of the mole vole Ellobius tancrei Blasius, 1884 (Mammalia, Rodentia) with the lowest chromosome number. Comparative Cytogenetics, 2013, 7, 163-169.	0.8	17
62	A Comparative Analysis of the Mole Vole Sibling Species <i>Ellobius tancrei</i> and <i>E. talpinus</i> (Cricetidae, Rodentia) through Chromosome Painting and Examination of Synaptonemal Complex Structures in Hybrids. Cytogenetic and Genome Research, 2012, 136, 199-207.	1.1	27
63	A Short Introduction to Cytogenetic Studies in Mammals with Reference to the Present Volume. Cytogenetic and Genome Research, 2012, 137, 83-96.	1.1	24
64	Comparative Chromosome Painting in Carnivora and Pholidota. Cytogenetic and Genome Research, 2012, 137, 174-193.	1.1	18
65	Chromosomal evolution in Rodentia. Heredity, 2012, 108, 4-16.	2.6	70
66	Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting. Heredity, 2012, 108, 17-27.	2.6	45
67	Comparative Chromosome Painting of Four Siberian Vespertilionidae Species with <i>Aselliscus stoliczkanus</i> and Human Probes. Cytogenetic and Genome Research, 2011, 134, 200-205.	1.1	13
68	Genotyping of Capreolus pygargus Fossil DNA from Denisova Cave Reveals Phylogenetic Relationships between Ancient and Modern Populations. PLoS ONE, 2011, 6, e24045.	2.5	17
69	Karyotype Evolution of Eulipotyphla (Insectivora): The Genome Homology of Seven Sorex Species Revealed by Comparative Chromosome Painting and Banding Data. Cytogenetic and Genome Research, 2011, 135, 51-64.	1.1	23
70	Chromosome painting in Tragulidae facilitates the reconstruction of Ruminantia ancestral karyotype. Chromosome Research, 2011, 19, 531-539.	2.2	25
71	Reconstruction of karyotype evolution in core Glires. I. The genome homology revealed by comparative chromosome painting. Chromosome Research, 2011, 19, 549-565.	2.2	15
72	Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosome Research, 2011, 19, 685-708.	2.2	49

#	Article	IF	CITATIONS
73	The genome diversity and karyotype evolution of mammals. Molecular Cytogenetics, 2011, 4, 22.	0.9	103
74	Genome-Wide Comparative Chromosome Map between Human and the Forrest's Pika <i>(Ochotona) Hypothesis. Cytogenetic and Genome Research, 2011, 132, 41-46.</i>	Tj ETQq0 (1.1	0 0 rgBT /Over 8
75	Conference "Chromosome 2009― Russian Journal of Genetics, 2010, 46, 1027-1028.	0.6	Ο
76	Supernumerary chromosomes, segmental duplications, and evolution. Russian Journal of Genetics, 2010, 46, 1094-1096.	0.6	14
77	Comparative cytogenetics of main Laurasiatheria taxa. Russian Journal of Genetics, 2010, 46, 1132-1137.	0.6	1
78	Comparative cytogenetics of rodents. Russian Journal of Genetics, 2010, 46, 1138-1142.	0.6	4
79	The role of chromosome rearrangements in the evolution of mole voles of the genus Ellobius (Rodentia, Mammalia). Russian Journal of Genetics, 2010, 46, 1143-1145.	0.6	20
80	Chromosome composition of interspecies hybrid embryonic stem cells in mice. Cell and Tissue Biology, 2010, 4, 128-135.	0.4	1
81	New insights into the karyotypic evolution in muroid rodents revealed by multicolor banding applying murine probes. Chromosome Research, 2010, 18, 265-275.	2.2	19
82	Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). III. Karyotype relationships of ten Microtus species. Chromosome Research, 2010, 18, 459-471.	2.2	37
83	Reconstruction of the Putative Cervidae Ancestral Karyotype by Chromosome Painting of Siberian Roe Deer <i>(Capreolus pygargus)</i> with Dromedary Probes. Cytogenetic and Genome Research, 2010, 128, 228-235.	1.1	19
84	Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. Journal of Heredity, 2009, 100, 659-674.	2.4	504
85	Chromosomal Mapping of Canine-Derived BAC Clones to the Red Fox and American Mink Genomes. Journal of Heredity, 2009, 100, S42-S53.	2.4	6
86	Cross-species chromosome painting in Cetartiodactyla: Reconstructing the karyotype evolution in key phylogenetic lineages. Chromosome Research, 2009, 17, 419-436.	2.2	45
87	Animal Probes and ZOO-FISH. , 2009, , 323-346.		20
88	Tracking genome organization in rodents by Zoo-FISH. Chromosome Research, 2008, 16, 261-274.	2.2	29
89	Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Research, 2008, 16, 89-107.	2.2	68
90	Phylogenomics of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting. Chromosome Research, 2008, 16, 129-143.	2.2	58

#	Article	IF	CITATIONS
91	Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes. Chromosome Research, 2008, 16, 1215-1231.	2.2	16
92	Karyotype evolution of giraffes (<i>Giraffa camelopardalis</i>) revealed by cross-species chromosome painting with Chinese muntjac (<i>Muntiacus reevesi</i>) and human (<i>Homo sapiens</i>) paints. Cytogenetic and Genome Research, 2008, 122, 132-138.	1.1	19
93	A meiotic linkage map of the silver fox, aligned and compared to the canine genome. Genome Research, 2007, 17, 387-399.	5.5	50
94	Mapping of <i>KIT</i> adjacent sequences on canid autosomes and B chromosomes. Cytogenetic and Genome Research, 2007, 116, 100-103.	1.1	35
95	<i>Ellobius lutescens</i> : Sex Determination and Sex Chromosome. Sexual Development, 2007, 1, 211-221.	2.0	46
96	Comparative chromosomics. Molecular Biology, 2007, 41, 361-375.	1.3	13
97	Analysis of expression of parental alleles Xist and Gla in interspecific embryonic hybrid cells during induced in vitro inactivation of X-chromosomes. Russian Journal of Developmental Biology, 2007, 38, 164-170.	0.5	2
98	Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Research, 2007, 15, 283-97.	2.2	52
99	Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Research, 2007, 15, 447-456.	2.2	49
100	Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Research, 2007, 15, 499-514.	2.2	110
101	Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Research, 2007, 15, 891-897.	2.2	57
102	Identical mutation in a novel retinal gene causes progressive rod–cone degeneration in dogs and retinitis pigmentosa in humans. Genomics, 2006, 88, 551-563.	2.9	161
103	Interstitial telomeric repeats as markers of evolutionary changes in the mammalian karyotype: Human chromosome 2. Biophysics (Russian Federation), 2006, 51, 535-540.	0.7	Ο
104	Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Research, 2006, 14, 151-159.	2.2	41
105	Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group. Chromosome Research, 2006, 14, 253-262.	2.2	23
106	Comparative genome maps of the pangolin, hedgehog, sloth, anteater and human revealed by cross-species chromosome painting: further insight into the ancestral karyotype and genome evolution of eutherian mammals. Chromosome Research, 2006, 14, 283-296.	2.2	58
107	Reciprocal chromosome painting between three laboratory rodent species. Mammalian Genome, 2006, 17, 1183-1192.	2.2	35
108	Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes?. Genome Research, 2006, 16, 306-310.	5.5	73

#	Article	IF	CITATIONS
109	New insights into the karyotypic relationships of Chinese muntjac <i>(Muntiacus) Tj ETQq1 1 0.784314 rgBT</i>	/Overlock 1.1	2 10 Tf 50 49
110	The proto-oncogene C-KIT maps to canid B-chromosomes. Chromosome Research, 2005, 13, 113-122.	2.2	72
111	Karyotypic conservatism in the suborder Feliformia (Order Carnivora). Cytogenetic and Genome Research, 2005, 108, 348-354.	1.1	31
112	G-Banding Homologies in Musk Ox, Ovibos moschatus, and other Bovids. Hereditas, 2004, 122, 185-187.	1.4	3
113	Evolution of Genome Organizations of Squirrels (Sciuridae) Revealed by Cross-Species Chromosome Painting. Chromosome Research, 2004, 12, 317-335.	2.2	51
114	Comparative map between the domestic pig and dog. Mammalian Genome, 2004, 15, 809-818.	2.2	29
115	Integrated Comparative Genome Maps and Their Implications for Karyotype Evolution of Carnivores. , 2004, , 215-224.		11
116	Chromosomal localization of six repeated DNA sequences among species of Microtus (Rodentia). Chromosome Research, 2003, 11, 705-713.	2.2	26
117	Comparative chromosome painting defines the karyotypic relationships among the domestic dog, Chinese raccoon dog and Japanese raccoon dog. Chromosome Research, 2003, 11, 735-740.	2.2	38
118	Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1062-1066.	7.1	164
119	Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenetic and Genome Research, 2002, 96, 137-145.	1.1	64
120	Complex structure of B-chromosomes in two mammalian species: Apodemus peninsulae (Rodentia) and Nyctereutes procyonoides (Carnivora). Chromosome Research, 2002, 10, 109-116.	2.2	58
121	Comparative Chromosome Painting. Russian Journal of Genetics, 2002, 38, 869-876.	0.6	1
122	Chromosomal phylogeny of certain shrews of the genera Crocidura and Suncus (Insectivora). Journal of Zoological Systematics and Evolutionary Research, 2001, 39, 69-76.	1.4	13
123	Karyotype relationships between distantly related marsupials from South America and Australia. Chromosome Research, 2001, 9, 301-308.	2.2	46
124	Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenetic and Genome Research, 2001, 92, 243-247.	1.1	81
125	Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Research, 2000, 8, 393-404.	2.2	92
126	A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Research, 2000, 8, 253-263.	2.2	96

#	Article	IF	CITATIONS
127	Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenetic and Genome Research, 2000, 90, 275-278.	1.1	51
128	Comparative cytogenetics of hamsters of the genus <i>Calomyscus</i> . Cytogenetic and Genome Research, 2000, 88, 296-304.	1.1	44
129	Comparative chromosome analysis in three Sorex species: S. raddei, S. minutus and S. caecutiens. Acta Theriologica, 2000, 45, 119-130.	1.1	15
130	DogMap: an international collaboration toward a low-resolution canine genetic marker map. , 1999, 90, 3-6.		8
131	Localization of HTLV-1 and HIV-1 proviral sequences in chromosomes of persistently infected cells. Chromosome Research, 1999, 7, 177-183.	2.2	11
132	Analysis of Notl linking clones isolated from human chromosome 3 specific libraries. Gene, 1999, 239, 259-271.	2.2	31
133	Assignment <footref rid="foot01">¹</footref> of the L11 ribosomal protein gene (RPL11) to human chromosome 1p36.1â†'p35 by in situ hybridization. Cytogenetic and Genome Research, 1999, 84, 97-98.	1.1	4
134	A Complete Comparative Chromosome Map for the Dog, Red Fox, and Human and Its Integration with Canine Genetic Maps. Genomics, 1999, 62, 189-202.	2.9	342
135	Comparative Cytogenetics of Some Species of Crocidura (Insectivora) with 2n=40 Cytologia, 1999, 64, 293-299.	0.6	4
136	Assignment of the L32 ribosomal protein gene (RPL32) to human chromosome 3q13.3→q21 by in situ hybridization. Cytogenetic and Genome Research, 1997, 77, 190-191.	1.1	2
137	G- and C-banding of Chromosomes in Baicalasellus angarensis (Crustacea, Isopoda) Cytologia, 1997, 62, 177-180.	0.6	0
138	Visualization of the Cattle Xp Homologous Regions on the X Chromosomes of Some Pecorans by Chromosome Microdissection and Heterologous Painting Cytologia, 1997, 62, 203-208.	0.6	2
139	Localization of the genes for major ribosomal RNA on chromosomes of the house musk shrew, Suncus murinus, at meiotic and mitotic cells by fluorescence in situ hybridization and silver staining Genes and Genetic Systems, 1997, 72, 215-218.	0.7	9
140	Organization and chromosomal localization of a B1-like containing repeat of Microtus subarvalis. Mammalian Genome, 1996, 7, 593-597.	2.2	21
141	Human chromosome 3: high-resolution fluorescencein situ hybridization mapping of 40 uniqueNotl linking clones homologous to genes and cDNAs. Chromosome Research, 1996, 4, 443-447.	2.2	27
142	Assignment of the ERM gene (ETV5) coding for the ets-related protein to human chromosome band 3q28 by in situ hybridization. Cytogenetic and Genome Research, 1996, 74, 220-220.	1.1	1
143	Localization of rat K51 keratin-like locus <i>(Kr10l</i>) to human and animal chromosomes by in situ hybridization. Cytogenetic and Genome Research, 1996, 73, 209-213.	1.1	3
144	Chromosome banding and gene conservation between humans and pigs. Journal of Animal Breeding and Genetics, 1995, 112, 151-155.	2.0	1

#	Article	IF	CITATIONS
145	A group of notl jumping and linking clones cover 2.5 Mb in the 3p21–p22 region suspected to contain a tumor suppressor gene. Cancer Genetics and Cytogenetics, 1995, 81, 144-150.	1.0	27
146	High-resolution GTG-banding patterns of dog and silver fox chromosomes: description and comparative analysis. Cytogenetic and Genome Research, 1995, 69, 226-231.	1.1	24
147	Localization of human ARF2 and NCK genes and 13 other <i>Not</i> l-linking clones to chromosome 3 by fluorescence in situ hybridization. Cytogenetic and Genome Research, 1995, 68, 91-94.	1.1	17
148	Localization of the tryptophanyl tRNA synthetase gene (WARS) on human and bovine chromosomes by in situ hybridization. Mammalian Genome, 1993, 4, 183-184.	2.2	6
149	Localization of ESD and A2M genes to sheep chromosome 3 by in situ hybridization. Cytogenetic and Genome Research, 1993, 62, 156-158.	1.1	8
150	Localization of the pig gene ESD to Chromosome 13 by in situ hybridization. Mammalian Genome, 1992, 3, 52-53.	2.2	14
151	Constitutive heterochromatin in early embryogenesis of Drosophila melanogaster. Molecular Genetics and Genomics, 1991, 229, 316-318.	2.4	41
152	Mapping of the silver fox genes: assignments of the genes for ME1, ADK, PP, PEPA, GSR, MPI, and GOT1. Cytogenetic and Genome Research, 1991, 56, 125-127.	1.1	2
153	Cytogenetics of beavers: a case of speciation by monobrachial centric fusions. Genome, 1991, 34, 324-328.	2.0	14
154	Constancy of the chromosome set in polyploid earthworms with special reference toEisenia nordenskioldi(Oligochaeta, Lumbricidae). Bollettino Di Zoologia, 1987, 54, 289-291.	0.3	1