
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6357751/publications.pdf Version: 2024-02-01

XINDING A

#	Article	IF	CITATIONS
1	A Solidâ€Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithiumâ€Sulfur Batteries. Small, 2022, 18, e2106144.	10.0	16
2	Exfoliation of MoS ₂ Nanosheets Enabled by a Redox-Potential-Matched Chemical Lithiation Reaction. Nano Letters, 2022, 22, 2956-2963.	9.1	35
3	Reversible Temperature-Responsive Cathode for Thermal Protection of Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5236-5244.	5.1	6
4	An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an "Adsorptionâ€Intercalation/Filling―Hybrid Mechanism. Advanced Energy Materials, 2022, 12, .	19.5	121
5	A Facile and Efficient Chemical Prelithiation of Graphite for Full Capacity Utilization of Liâ€lon Batteries. Energy Technology, 2022, 10, .	3.8	3
6	Understanding of the sodium storage mechanism in hard carbon anodes. , 2022, 4, 1133-1150.		83
7	An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. Journal of Energy Chemistry, 2021, 54, 564-570.	12.9	15
8	Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 5639-5647.	10.3	36
9	A controllable thermal-sensitivity separator with an organic–inorganic hybrid interlayer for high-safety lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2313-2319.	5.9	10
10	Enabling stable and high-rate cycling of a Ni-rich layered oxide cathode for lithium-ion batteries by modification with an artificial Li ⁺ -conducting cathode-electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 11623-11631.	10.3	33
11	The Underlying Mechanism for Reduction Stability of Organic Electrolytes in Lithium Secondary Batteries. Chemical Science, 2021, 12, 9037-9041.	7.4	22
12	Tunable Electrocatalytic Behavior of Sodiated MoS ₂ Active Sites toward Efficient Sulfur Redox Reactions in Roomâ€Temperature Na–S Batteries. Advanced Materials, 2021, 33, e2100229.	21.0	66
13	Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 274-279.	2.6	9
14	Ethylene Carbonateâ€Free Propylene Carbonateâ€Based Electrolytes with Excellent Electrochemical Compatibility for Liâ€Ion Batteries through Engineering Electrolyte Solvation Structure. Advanced Energy Materials, 2021, 11, 2003905.	19.5	68
15	Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode. ACS Applied Materials & Interfaces, 2021, 13, 18914-18922.	8.0	18
16	Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Liâ€Ion Batteries by Chemical Prelithiation of Graphite Anode. Advanced Functional Materials, 2021, 31, 2101181.	14.9	115
17	<i>In Situ</i> -Formed Artificial Solid Electrolyte Interphase for Boosting the Cycle Stability of Si-Based Anodes for Li-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 22505-22513.	8.0	14
18	Metalâ€Ligand Ï€ Interactions in Lithiumâ€Rich Li ₂ RhO ₃ Cathode Material Activate Bimodal Anionic Redox. Advanced Energy Materials, 2021, 11, 2100892.	19.5	21

#	Article	IF	CITATIONS
19	Microstructureâ€Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. Small, 2021, 17, e2102248.	10.0	50
20	Metal/ <scp>covalentâ€organic</scp> frameworks for electrochemical energy storage applications. EcoMat, 2021, 3, e12133.	11.9	36
21	Amorphous NaVOPO ₄ as a High-Rate and Ultrastable Cathode Material for Sodium-Ion Batteries. CCS Chemistry, 2021, 3, 2428-2436.	7.8	34
22	Designing Advanced Electrolytes for Lithium Secondary Batteries Based on the Coordination Number Rule. ACS Energy Letters, 2021, 6, 4282-4290.	17.4	60
23	Direct Regeneration of Spent Li-Ion Battery Cathodes via Chemical Relithiation Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 16384-16393.	6.7	42
24	Roomâ€Temperature Allâ€Solidâ€State Lithium–Organic Batteries Based on Sulfide Electrolytes and Organodisulfide Cathodes. Advanced Energy Materials, 2021, 11, 2102962.	19.5	19
25	Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. Energy Storage Materials, 2020, 24, 635-643.	18.0	139
26	A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. Journal of Energy Chemistry, 2020, 44, 33-40.	12.9	59
27	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. Communications Chemistry, 2020, 3, .	4.5	35
28	A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochimica Acta, 2020, 332, 135533.	5.2	67
29	Building a Thermal Shutdown Cathode for Liâ€lon Batteries Using Temperatureâ€Responsive Poly(3â€Dodecylthiophene). Energy Technology, 2020, 8, 2000365.	3.8	26
30	Building a Cycle-Stable Fe–Si Alloy/Carbon Nanocomposite Anode for Li-Ion Batteries through a Covalent-Bonding Method. ACS Applied Materials & Interfaces, 2020, 12, 30503-30509.	8.0	34
31	Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16411-16416.	8.0	55
32	Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17620-17627.	8.0	95
33	A Highâ€Performance Li–Mn–O Liâ€rich Cathode Material with Rhombohedral Symmetry via Intralayer Li/Mn Disordering. Advanced Materials, 2020, 32, e2000190.	21.0	83
34	Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode. , 2020, 2, 358-366.		19
35	Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 32771-32777.	8.0	5
36	Enabling an intrinsically safe and highâ€energyâ€density 4.5 Vâ€class Liâ€ion battery with nonflammable electrolyte. InformaÄnÄ-MateriÄ¡ly, 2020, 2, 984-992.	17.3	81

#	Article	IF	CITATIONS
37	Ultralowâ€Strain Znâ€Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage. Advanced Functional Materials, 2020, 30, 1910327.	14.9	110
38	Suppressing Voltage Fading of Liâ€Rich Oxide Cathode via Building a Wellâ€Protected and Partiallyâ€Protonated Surface by Polyacrylic Acid Binder for Cycleâ€Stable Liâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1904264.	19.5	101
39	Chemically Prelithiated Hardâ€Carbon Anode for High Power and High Capacity Liâ€lon Batteries. Small, 2020, 16, e1907602.	10.0	144
40	Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent. Chemical Communications, 2020, 56, 6559-6562.	4.1	23
41	Surface Modification of Fe ₇ S ₈ /C Anode via Ultrathin Amorphous TiO ₂ Layer for Enhanced Sodium Storage Performance. Small, 2020, 16, e2000745.	10.0	28
42	Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1644-1652.	17.4	74
43	A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. Energy Storage Materials, 2019, 17, 275-283.	18.0	42
44	An Al-doped high voltage cathode of Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ enabling highly stable 4 V full sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18940-18949.	10.3	37
45	A High-Voltage and Cycle Stable Aqueous Rechargeable Na-Ion Battery Based on Na ₂ Zn ₃ [Fe(CN) ₆] ₂ –NaTi ₂ (PO ₄ Intercalation Chemistry. ACS Applied Energy Materials, 2019, 2, 5809-5815.)< su b>3<	/su2dat>
46	Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy, 2019, 64, 103903.	16.0	105
47	High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double Na ₃ V ₂ (PO ₄) ₃ Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 27833-27838.	8.0	40
48	Highly Electrochemicallyâ€Reversible Mesoporous Na ₂ FePO ₄ F/C as Cathode Material for Highâ€Performance Sodiumâ€ion Batteries. Small, 2019, 15, e1903723.	10.0	38
49	A Membrane-Free and Energy-Efficient Three-Step Chlor-Alkali Electrolysis with Higher-Purity NaOH Production. ACS Applied Materials & Interfaces, 2019, 11, 45126-45132.	8.0	14
50	Highly Selective and Pollutionâ€Free Electrochemical Extraction of Lithium by a Polyaniline/Li _{<i>x</i>} Mn ₂ O ₄ Cell. ChemSusChem, 2019, 12, 1361-1367.	6.8	60
51	Polyaniline hollow nanofibers prepared by controllable sacrifice-template route as high-performance cathode materials for sodium-ion batteries. Electrochimica Acta, 2019, 301, 352-358.	5.2	32
52	Schwefelâ€basierte Elektroden mit Mehrelektronenreaktionen für Raumtemperaturâ€Natriumionenspeicherung. Angewandte Chemie, 2019, 131, 18490-18504.	2.0	9
53	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters, 2019, 4, 1717-1724.	17.4	151
54	Sulfurâ€Based Electrodes that Function via Multielectron Reactions for Roomâ€Temperature Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2019, 58, 18324-18337.	13.8	69

#	Article	IF	CITATIONS
55	In Situ Formation of Co ₉ S ₈ Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. ACS Applied Materials & Interfaces, 2019, 11, 19218-19226.	8.0	51
56	Electrolytes for Dual arbon Batteries. ChemElectroChem, 2019, 6, 2615-2629.	3.4	59
57	Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2019, 11, 13251-13256.	8.0	30
58	High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. Science China Chemistry, 2019, 62, 118-125.	8.2	13
59	Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Storage Materials, 2019, 22, 330-336.	18.0	111
60	Recent Progress in Rechargeable Sodiumâ€lon Batteries: toward Highâ€Power Applications. Small, 2019, 15, e1805427.	10.0	254
61	Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale, 2019, 11, 21999-22005.	5.6	39
62	3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy, 2019, 56, 160-168.	16.0	134
63	Stable Li Metal Anode with "lon–Solvent-Coordinated―Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Letters, 2019, 4, 483-488.	17.4	148
64	High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 729-735.	5.1	34
65	Well-defined Na2Zn3[Fe(CN)6]2 nanocrystals as a low-cost and cycle-stable cathode material for Na-ion batteries. Electrochemistry Communications, 2019, 98, 78-81.	4.7	23
66	An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. Energy Storage Materials, 2019, 18, 92-99.	18.0	44
67	A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries. CheM, 2018, 4, 1167-1180.	11.7	140
68	Prussian Blue Cathode Materials for Sodiumâ€ion Batteries and Other Ion Batteries. Advanced Energy Materials, 2018, 8, 1702619.	19.5	460
69	A high voltage cathode of Na _{2+2x} Fe _{2â[~]x} (SO ₄) ₃ intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. Journal of Materials Chemistry A, 2018, 6, 4354-4364.	10.3	43
70	Recent Progress in Ironâ€Based Electrode Materials for Gridâ€6cale Sodiumâ€lon Batteries. Small, 2018, 14, 1703116.	10.0	146
71	Lowâ€Ðefect and Lowâ€₽orosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703238.	19.5	414
72	Symmetric Sodium-Ion Capacitor Based on Na _{0.44} MnO ₂ Nanorods for Low-Cost and High-Performance Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 11689-11698.	8.0	62

#	Article	IF	CITATIONS
73	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2018, 10, 593-601.	8.0	116
74	Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. Journal of Materials Chemistry A, 2018, 6, 23396-23407.	10.3	52
75	A Bifunctional Fluorophosphate Electrolyte for Safer Sodium-Ion Batteries. IScience, 2018, 10, 114-122.	4.1	43
76	Aligning academia and industry for unified battery performance metrics. Nature Communications, 2018, 9, 5262.	12.8	244
77	Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39651-39660.	8.0	40
78	A Nonflammable Na ⁺ â€Based Dualâ€Carbon Battery with Lowâ€Cost, High Voltage, and Long Cycle Life. Advanced Energy Materials, 2018, 8, 1802176.	19.5	90
79	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38141-38150.	8.0	51
80	Novel Alkaline Zn/Na _{0.44} MnO ₂ Dual-Ion Battery with a High Capacity and Long Cycle Lifespan. ACS Applied Materials & Interfaces, 2018, 10, 34108-34115.	8.0	50
81	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3, 674-681.	39.5	557
82	Recent Advances in Sodium-Ion Battery Materials. Electrochemical Energy Reviews, 2018, 1, 294-323.	25.5	224
83	Sodiumâ€ion Batteries: Prussian Blue Cathode Materials for Sodiumâ€ion Batteries and Other Ion Batteries (Adv. Energy Mater. 17/2018). Advanced Energy Materials, 2018, 8, 1870079.	19.5	32
84	Phosphate Framework Electrode Materials for Sodium Ion Batteries. Advanced Science, 2017, 4, 1600392.	11.2	275
85	High Rate, Long Lifespan LiV ₃ O ₈ Nanorods as a Cathode Material for Lithiumâ€ion Batteries. Small, 2017, 13, 1603148.	10.0	57
86	Graphene-Scaffolded Na ₃ V ₂ (PO ₄) ₃ Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 7177-7184.	8.0	156
87	Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for Highâ€Efficiency Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700403.	19.5	662
88	Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11626-11633.	8.0	29
89	Yolk–Shell TiO ₂ @C Nanocomposite as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 345-353.	8.0	69
90	A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core–shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23238-23242.	10.3	70

#	Article	IF	CITATIONS
91	Novel Ceramic-Grafted Separator with Highly Thermal Stability for Safe Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25970-25975.	8.0	100
92	An All-Phosphate and Zero-Strain Sodium-Ion Battery Based on Na ₃ V ₂ (PO ₄) ₃ Cathode, NaTi ₂ (PO ₄) ₃ Anode, and Trimethyl Phosphate Electrolyte with Intrinsic Safety and Long Lifespan. ACS Applied Materials & Interfaces, 2017, 9, 43733-43738.	8.0	36
93	Surface-engineering enhanced sodium storage performance of Na3V2(PO4)3 cathode via in-situ self-decorated conducting polymer route. Science China Chemistry, 2017, 60, 1546-1553.	8.2	24
94	3D Graphene Decorated NaTi ₂ (PO ₄) ₃ Microspheres as a Superior Highâ€Rate and Ultracycle‣table Anode Material for Sodium Ion Batteries. Advanced Energy Materials, 2016, 6, 1502197.	19.5	251
95	Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage. ACS Applied Materials & Interfaces, 2016, 8, 18867-18877.	8.0	43
96	A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 7416-7421.	10.3	267
97	A Safer Sodiumâ€lon Battery Based on Nonflammable Organic Phosphate Electrolyte. Advanced Science, 2016, 3, 1600066.	11.2	116
98	SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery. Jom, 2016, 68, 2607-2612.	1.9	9
99	Low Defect FeFe(CN) ₆ Framework as Stable Host Material for High Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23706-23712.	8.0	115
100	Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries. Jom, 2016, 68, 2579-2584.	1.9	26
101	Dual Core–Shell Structured Si@SiO _{<i>x</i>} @C Nanocomposite Synthesized via a One-Step Pyrolysis Method as a Highly Stable Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31611-31616.	8.0	88
102	Electrospun TiO ₂ /C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16684-16689.	8.0	121
103	Graphene-supported TiO ₂ nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 11351-11356.	10.3	72
104	Building thermally stable Li-ion batteries using a temperature-responsive cathode. Journal of Materials Chemistry A, 2016, 4, 11239-11246.	10.3	68
105	Grapheneâ€Modified TiO ₂ Microspheres Synthesized by a Facile Sprayâ€Drying Route for Enhanced Sodiumâ€Ion Storage. Particle and Particle Systems Characterization, 2016, 33, 545-552.	2.3	42
106	Grapheneâ€Wrapped Na ₂ C ₁₂ H ₆ O ₄ Nanoflowers as High Performance Anodes for Sodiumâ€ion Batteries. Small, 2016, 12, 583-587.	10.0	82
107	Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 9185-9193.	8.0	22
108	Highly Crystallized Na ₂ CoFe(CN) ₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5393-5399.	8.0	334

XINPING AI

#	Article	IF	CITATIONS
109	TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. Journal of Membrane Science, 2016, 504, 97-103.	8.2	161
110	Nanospherical-Like Manganese Monoxide/Reduced Graphene Oxide Composite Synthesized by Electron Beam Radiation as Anode Material for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 196, 431-439.	5.2	34
111	Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2016, 8, 1337-1343.	8.0	69
112	Poly(3-butylthiophene)-based positive-temperature-coefficient electrodes for safer lithium-ion batteries. Electrochimica Acta, 2016, 187, 173-178.	5.2	30
113	Hierarchical Carbon Framework Wrapped Na ₃ V ₂ (PO ₄) ₃ as a Superior Highâ€Rate and Extended Lifespan Cathode for Sodiumâ€Ion Batteries. Advanced Materials, 2015, 27, 5895-5900.	21.0	448
114	Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5708-5713.	10.3	104
115	Enabling a high capacity and long cycle life for nano-Si anodes by building a stable solid interface with a Li ⁺ -conducting polymer. Journal of Materials Chemistry A, 2015, 3, 9938-9944.	10.3	22
116	Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 7406-7412.	10.3	130
117	High-Performance Olivine NaFePO ₄ Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 17977-17984.	8.0	141
118	Improved rate capability of the conducting functionalized FTO-coated Li-[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17113-17119.	10.3	34
119	Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries. RSC Advances, 2015, 5, 172-176.	3.6	61
120	A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 24119-24126.	8.0	119
121	A type of sodium-ion full-cell with a layered NaNi _{0.5} Ti _{0.5} O ₂ cathode and a pre-sodiated hard carbon anode. RSC Advances, 2015, 5, 106519-106522.	3.6	82
122	Enhanced Cycling Stability of Sulfur Cathode Surface-Modified by Poly(N-methylpyrrole). Electrochimica Acta, 2014, 135, 108-113.	5.2	13
123	Bis(2,2,2-trifluoroethyl) methylphosphonate: An Novel Flame-retardant Additive for Safe Lithium-ion Battery. Electrochimica Acta, 2014, 129, 300-304.	5.2	46
124	Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy and Environmental Science, 2014, 7, 323-328.	30.8	594
125	A tin(<scp>ii</scp>) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16424-16428.	10.3	142
126	Mesoporous Amorphous FePO ₄ Nanospheres as High-Performance Cathode Material for Sodium-Ion Batteries. Nano Letters, 2014, 14, 3539-3543.	9.1	239

XINPING AI

#	Article	IF	CITATIONS
127	Li ⁺ -Conductive Polymer-Embedded Nano-Si Particles as Anode Material for Advanced Li-ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 3508-3512.	8.0	83
128	A Honeycomb‣ayered Na ₃ Ni ₂ SbO ₆ : A Highâ€Rate and Cycleâ€Stable Cathode for Sodiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6301-6306.	21.0	252
129	Synergistic Na-Storage Reactions in Sn ₄ P ₃ as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries. Nano Letters, 2014, 14, 1865-1869.	9.1	379
130	Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 8854-8858.	10.3	229
131	Photoregenerative lâ^'/l3â^' couple as a liquid cathode for proton exchange membrane fuel cell. Scientific Reports, 2014, 4, 6795.	3.3	3
132	Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. Journal of Materials Chemistry A, 2013, 1, 11397.	10.3	219
133	A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochemistry Communications, 2013, 31, 145-148.	4.7	289
134	Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10130.	10.3	295
135	A redoxâ€active polythiopheneâ€modified separator for safety control of lithiumâ€ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1487-1493.	2.1	13
136	Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chemical Communications, 2013, 49, 11370.	4.1	89
137	Electroactive organic anionâ€doped polypyrrole as a low cost and renewable cathode for sodiumâ€ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 114-118.	2.1	76
138	Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4988.	10.3	103
139	High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 4633-4636.	13.8	588
140	Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3895.	10.3	244
141	SiC–Sb–C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. Electrochimica Acta, 2013, 87, 41-45.	5.2	92
142	Synthesis of Monoclinic Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ Nanoparticles by a Layeredâ€Template Route for Highâ€Performance Liâ€Ion Batteries. European Journal of Inorganic Chemistry, 2013, 2013, 2887-2892.	2.0	19
143	An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries. Journal of Power Sources, 2013, 227, 106-110.	7.8	71
144	A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7181.	10.3	130

#	Article	IF	CITATIONS
145	A Li+-conductive microporous carbon–sulfur composite for Li-S batteries. Electrochimica Acta, 2013, 87, 497-502.	5.2	99
146	Fe(CN)6â^'4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries. RSC Advances, 2012, 2, 5495.	3.6	64
147	Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17768.	6.7	86
148	High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chemical Communications, 2012, 48, 7070.	4.1	622
149	A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries. Science Bulletin, 2012, 57, 4205-4209.	1.7	31
150	An electrolyte additive for thermal shutdown protection of Li-ion batteries. Electrochemistry Communications, 2012, 25, 98-100.	4.7	40
151	Green Synthesis and Stable Li-Storage Performance of FeSi ₂ /Si@C Nanocomposite for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3753-3758.	8.0	102
152	Nanosized Na ₄ Fe(CN) ₆ /C Composite as a Low ost and Highâ€Rate Cathode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2012, 2, 410-414.	19.5	257
153	In Situ Generation of Few‣ayer Graphene Coatings on SnO ₂ ‣iC Coreâ€5hell Nanoparticles for Highâ€Performance Lithium″on Storage. Advanced Energy Materials, 2012, 2, 95-102.	19.5	233
154	In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage (Adv. Energy Mater. 1/2012). Advanced Energy Materials, 2012, 2, 94-94.	19.5	5
155	Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 291-295.	2.5	22
156	Redoxâ€Active Fe(CN) ₆ ^{4â^'} â€Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Liâ€ion Batteries. Advanced Materials, 2011, 23, 4913-4917.	21.0	128
157	Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. Journal of Materials Chemistry, 2010, 20, 7266.	6.7	60
158	Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis method. Journal of Solid State Electrochemistry, 2008, 12, 687-691.	2.5	27
159	Enhanced electrochemical performance of submicron LiCoO2 synthesized by polymer pyrolysis method. Journal of Solid State Electrochemistry, 2007, 12, 149-153.	2.5	17
160	Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. Journal of Solid State Electrochemistry, 2006, 10, 283-287.	2.5	27
161	Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochimica Acta, 2004, 49, 4189-4196.	5.2	128
162	Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003, 6, A30.	2.2	86

#	Article	IF	CITATIONS
163	Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode. Russian Journal of Electrochemistry, 2002, 38, 321-325.	0.9	33