Alán Aspuru Guzik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6356474/publications.pdf

Version: 2024-02-01

377 papers

46,721 citations

94 h-index 203 g-index

416 all docs

416 docs citations

416 times ranked 31972 citing authors

#	Article	IF	CITATIONS
1	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	1.7	2,561
2	A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 2014, 5, 4213.	12.8	2,210
3	Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Science, 2018, 4, 268-276.	11.3	1,761
4	A metal-free organic–inorganic aqueous flow battery. Nature, 2014, 505, 195-198.	27.8	1,333
5	The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 2016, 18, 023023.	2.9	1,186
6	Inverse molecular design using machine learning: Generative models for matter engineering. Science, 2018, 361, 360-365.	12.6	1,055
7	Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature, 2011, 480, 504-508.	27.8	981
8	Environment-assisted quantum walks in photosynthetic energy transfer. Journal of Chemical Physics, 2008, 129, 174106.	3.0	939
9	High Electrical Conductivity in Ni ₃ (2,3,6,7,10,11-hexaiminotriphenylene) ₂ , a Semiconducting Metal–Organic Graphene Analogue. Journal of the American Chemical Society, 2014, 136, 8859-8862.	13.7	893
10	Simulated Quantum Computation of Molecular Energies. Science, 2005, 309, 1704-1707.	12.6	852
11	Quantum Chemistry in the Age of Quantum Computing. Chemical Reviews, 2019, 119, 10856-10915.	47.7	748
12	Quantum computational chemistry. Reviews of Modern Physics, 2020, 92, .	45. 6	726
13	Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nature Materials, 2016, 15, 1120-1127.	27.5	708
14	Environment-assisted quantum transport. New Journal of Physics, 2009, 11, 033003.	2.9	694
15	Photonic quantum simulators. Nature Physics, 2012, 8, 285-291.	16.7	681
16	Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 2019, 37, 1038-1040.	17.5	671
17	Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370, 708-711.	12.6	616
18	Scalable Quantum Simulation of Molecular Energies. Physical Review X, 2016, 6, .	8.9	577

#	Article	IF	CITATIONS
19	Towards quantum chemistry on a quantum computer. Nature Chemistry, 2010, 2, 106-111.	13.6	568
20	Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 2022, 94, .	45.6	521
21	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	3.0	518
22	Accelerating the discovery of materials for clean energy in the era of smart automation. Nature Reviews Materials, 2018, 3, 5-20.	48.7	489
23	Observation of topologically protected bound states in photonic quantum walks. Nature Communications, 2012, 3, 882.	12.8	488
24	Using coherence to enhance function in chemical and biophysical systems. Nature, 2017, 543, 647-656.	27.8	477
25	The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid. Journal of Physical Chemistry Letters, 2011, 2, 2241-2251.	4.6	470
26	A redox-flow battery with an alloxazine-based organic electrolyte. Nature Energy, 2016, 1 , .	39.5	427
27	QSAR without borders. Chemical Society Reviews, 2020, 49, 3525-3564.	38.1	427
28	Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, 2019, 4, 014008.	5.8	381
29	Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Physical Chemistry Chemical Physics, 2015, 17, 31371-31396.	2.8	376
30	Discrete Single-Photon Quantum Walks with Tunable Decoherence. Physical Review Letters, 2010, 104, 153602.	7.8	346
31	Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator. Physical Review X, 2018, 8, .	8.9	342
32	Computational design of molecules for an all-quinone redox flow battery. Chemical Science, 2015, 6, 885-893.	7.4	341
33	From computational discovery to experimental characterization of a high hole mobility organic crystal. Nature Communications, 2011, 2, 437.	12.8	321
34	Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Central Science, 2016, 2, 725-732.	11.3	321
35	Simulation of electronic structure Hamiltonians using quantum computers. Molecular Physics, 2011, 109, 735-750.	1.7	310
36	Self-driving laboratory for accelerated discovery of thin-film materials. Science Advances, 2020, 6, eaaz 8867.	10.3	306

#	Article	IF	Citations
37	Role of Quantum Coherence and Environmental Fluctuations in Chromophoric Energy Transport. Journal of Physical Chemistry B, 2009, 113, 9942-9947.	2.6	300
38	Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantumâ€Classical Algorithms. Advanced Quantum Technologies, 2019, 2, 1900070.	3.9	298
39	Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology, 2017, 2, 045001.	5 . 8	295
40	Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule, 2018, 2, 1894-1906.	24.0	293
41	Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. Machine Learning: Science and Technology, 2020, 1, 045024.	5.0	272
42	Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models. Frontiers in Pharmacology, 2020, 11, 565644.	3.5	266
43	Reinforced Adversarial Neural Computer for <i>de Novo</i> Molecular Design. Journal of Chemical Information and Modeling, 2018, 58, 1194-1204.	5.4	256
44	Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports, 2012, 2, 571.	3.3	247
45	Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. Physical Review Letters, 2018, 120, 110501.	7.8	243
46	Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18681-18686.	7.1	241
47	The 2019 materials by design roadmap. Journal Physics D: Applied Physics, 2019, 52, 013001.	2.8	236
48	Boson sampling for molecular vibronic spectra. Nature Photonics, 2015, 9, 615-620.	31.4	230
49	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	12.8	226
50	Simulating Chemistry Using Quantum Computers. Annual Review of Physical Chemistry, 2011, 62, 185-207.	10.8	224
51	Phoenics: A Bayesian Optimizer for Chemistry. ACS Central Science, 2018, 4, 1134-1145.	11.3	215
52	Machine-learned potentials for next-generation matter simulations. Nature Materials, 2021, 20, 750-761.	27.5	214
53	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. Journal of the American Chemical Society, 2020, 142, 5742-5750.	13.7	206
54	What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery. Annual Review of Materials Research, 2015, 45, 195-216.	9.3	203

#	Article	IF	CITATIONS
55	Inverse Design of Solid-State Materials via a Continuous Representation. Matter, 2019, 1, 1370-1384.	10.0	198
56	Photonics meets excitonics: natural and artificial molecular aggregates. Nanophotonics, 2013, 2, 21-38.	6.0	195
57	Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project. Energy and Environmental Science, 2014, 7, 698-704.	30.8	189
58	Anthraquinone Derivatives in Aqueous Flow Batteries. Advanced Energy Materials, 2017, 7, 1601488.	19.5	189
59	Atomistic Study of the Long-Lived Quantum Coherences in the Fenna-Matthews-Olson Complex. Biophysical Journal, 2012, 102, 649-660.	0.5	188
60	Time-dependent density-functional theory in massively parallel computer architectures: the octopus project. Journal of Physics Condensed Matter, 2012, 24, 233202.	1.8	181
61	Understanding Polymorphism in Organic Semiconductor Thin Films through Nanoconfinement. Journal of the American Chemical Society, 2014, 136, 17046-17057.	13.7	179
62	Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials, 2021, 6, 701-716.	48.7	179
63	Next-Generation Experimentation with Self-Driving Laboratories. Trends in Chemistry, 2019, 1, 282-291.	8.5	175
64	From transistor to trapped-ion computers for quantum chemistry. Scientific Reports, 2014, 4, 3589.	3.3	172
65	Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence, 2021, 3, 76-86.	16.0	172
66	Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter, 2021, 4, 1578-1597.	10.0	170
67	Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy and Environmental Science, 2011, 4, 4849.	30.8	169
68	Data-Driven Strategies for Accelerated Materials Design. Accounts of Chemical Research, 2021, 54, 849-860.	15.6	168
69	Alkaline Benzoquinone Aqueous Flow Battery for Largeâ€Scale Storage of Electrical Energy. Advanced Energy Materials, 2018, 8, 1702056.	19.5	161
70	Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery. Advanced Functional Materials, 2015, 25, 6495-6502.	14.9	160
71	Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics. Joule, 2017, 1, 857-870.	24.0	157
72	Extending the Lifetime of Organic Flow Batteries via Redox State Management. Journal of the American Chemical Society, 2019, 141, 8014-8019.	13.7	151

#	Article	IF	Citations
73	Beyond Ternary OPV: Highâ€Throughput Experimentation and Selfâ€Driving Laboratories Optimize Multicomponent Systems. Advanced Materials, 2020, 32, e1907801.	21.0	138
74	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	48.7	136
75	Accelerating Resolution-of-the-Identity Second-Order MÃ, llerâ^Plesset Quantum Chemistry Calculations with Graphical Processing Units. Journal of Physical Chemistry A, 2008, 112, 2049-2057.	2.5	133
76	Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Physical Review A, 2015, 91, .	2.5	133
77	Potential of quantum computing for drug discovery. IBM Journal of Research and Development, 2018, 62, 6:1-6:20.	3.1	130
78	Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries. Journal of Materials Chemistry A, 2019, 7, 12833-12841.	10.3	128
79	Identification Schemes for Metal–Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis. Crystal Growth and Design, 2019, 19, 6682-6697.	3.0	123
80	On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations. Journal of Chemical Physics, 2012, 137, 224103.	3.0	121
81	Non-Markovian quantum jumps in excitonic energy transfer. Journal of Chemical Physics, 2009, 131, 184102.	3.0	120
82	Modified Scaled Hierarchical Equation of Motion Approach for the Study of Quantum Coherence in Photosynthetic Complexes. Journal of Physical Chemistry B, 2011, 115, 1531-1537.	2.6	120
83	Adiabatic Quantum Simulation of Quantum Chemistry. Scientific Reports, 2014, 4, 6603.	3.3	120
84	Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. ACS Nano, 2015, 9, 7769-7774.	14.6	113
85	ChemOS: Orchestrating autonomous experimentation. Science Robotics, 2018, 3, .	17.6	113
86	Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16521-16526.	7.1	112
87	Machine learning exciton dynamics. Chemical Science, 2016, 7, 5139-5147.	7.4	112
88	Separation of Electromagnetic and Chemical Contributions to Surface-Enhanced Raman Spectra on Nanoengineered Plasmonic Substrates. Journal of Physical Chemistry Letters, 2010, 1, 2740-2746.	4.6	106
89	Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nature Materials, 2018, 17, 159-166.	27. 5	106
90	Scalable High-Performance Algorithm for the Simulation of Exciton Dynamics. Application to the Light-Harvesting Complex II in the Presence of Resonant Vibrational Modes. Journal of Chemical Theory and Computation, 2014, 10, 4045-4054.	5.3	103

#	Article	IF	CITATIONS
91	An Alternative Host Material for Longâ€Lifespan Blue Organic Lightâ€Emitting Diodes Using Thermally Activated Delayed Fluorescence. Advanced Science, 2017, 4, 1600502.	11.2	103
92	Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode. Nature Communications, 2014, 5, 5561.	12.8	102
93	Generative Adversarial Networks for Crystal Structure Prediction. ACS Central Science, 2020, 6, 1412-1420.	11.3	102
94	Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry. Journal of Chemical Theory and Computation, 2014, 10, 897-907.	5.3	100
95	Exponentially more precise quantum simulation of fermions in second quantization. New Journal of Physics, 2016, 18, 033032.	2.9	100
96	Hydrogen-bonded diketopyrrolopyrrole (DPP) pigments as organic semiconductors. Organic Electronics, 2014, 15, 3521-3528.	2.6	99
97	Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 2021, 175, 113806.	13.7	99
98	A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis. Journal of the American Chemical Society, 2022, 144, 1205-1217.	13.7	97
99	Quantum algorithm for obtaining the energy spectrum of molecular systems. Physical Chemistry Chemical Physics, 2008, 10, 5388.	2.8	95
100	Data-science driven autonomous process optimization. Communications Chemistry, 2021, 4, .	4.5	94
101	Exploiting Locality in Quantum Computation for Quantum Chemistry. Journal of Physical Chemistry Letters, 2014, 5, 4368-4380.	4.6	93
102	Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex. Chemical Science, 2020, 11, 4584-4601.	7.4	93
103	Communication: Exciton–phonon information flow in the energy transfer process of photosynthetic complexes. Journal of Chemical Physics, 2011, 134, 101103.	3.0	92
104	A quantum–quantum Metropolis algorithm. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 754-759.	7.1	92
105	On the chemical bonding effects in the Raman response: Benzenethiol adsorbed on silver clusters. Physical Chemistry Chemical Physics, 2009, 11, 9401.	2.8	91
106	Faster quantum chemistry simulation on fault-tolerant quantum computers. New Journal of Physics, 2012, 14, 115023.	2.9	91
107	Molecular Engineering of an Alkaline Naphthoquinone Flow Battery. ACS Energy Letters, 2019, 4, 1880-1887.	17.4	90
108	The Matter Simulation (R)evolution. ACS Central Science, 2018, 4, 144-152.	11.3	88

#	Article	IF	Citations
109	Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories. Chemical Science, 2018, 9, 7642-7655.	7.4	86
110	The Harvard organic photovoltaic dataset. Scientific Data, 2016, 3, 160086.	5.3	85
111	Use machine learning to find energy materials. Nature, 2017, 552, 23-27.	27.8	85
112	Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization. Quantum - the Open Journal for Quantum Science, 0, 4, 296.	0.0	85
113	Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models. Physical Review A, 2008, 78, .	2.5	84
114	Quantum stochastic walks: A generalization of classical random walks and quantum walks. Physical Review A, 2010, 81, .	2.5	83
115	Absence of Quantum Oscillations and Dependence on Site Energies in Electronic Excitation Transfer in the Fenna–Matthews–Olson Trimer. Journal of Physical Chemistry Letters, 2011, 2, 2912-2917.	4.6	83
116	A quantum computing view on unitary coupled cluster theory. Chemical Society Reviews, 2022, 51, 1659-1684.	38.1	83
117	Multiple coherent states for first-principles semiclassical initial value representation molecular dynamics. Journal of Chemical Physics, 2009, 130, 234113.	3.0	82
118	Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl <i>a</i> in Solution and in FMO Proteins. Journal of Physical Chemistry B, 2015, 119, 9995-10004.	2.6	82
119	Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure. Journal of the American Chemical Society, 2013, 135, 11006-11014.	13.7	81
120	How machine learning can assist the interpretation of <i>ab initio</i> molecular dynamics simulations and conceptual understanding of chemistry. Chemical Science, 2019, 10, 2298-2307.	7.4	80
121	Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes. New Journal of Physics, 2012, 14, 105013.	2.9	79
122	Atomistic Study of Energy Funneling in the Light-Harvesting Complex of Green Sulfur Bacteria. Journal of the American Chemical Society, 2014, 136, 2048-2057.	13.7	78
123	ChemOS: An orchestration software to democratize autonomous discovery. PLoS ONE, 2020, 15, e0229862.	2.5	77
124	Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units and a Mixed Precision Matrix Multiplication Library. Journal of Chemical Theory and Computation, 2010, 6, 135-144.	5.3	75
125	Strongly Coupled Quantum Heat Machines. Journal of Physical Chemistry Letters, 2015, 6, 3477-3482.	4.6	7 5
126	Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians. Npj Quantum Information, 2020, 6, .	6.7	74

#	Article	IF	Citations
127	Theoretical Characterization of the Air-Stable, High-Mobility Dinaphtho[2,3- <i>b</i> :2′3′- <i>f</i>]thieno[3,2- <i>b</i>]-thiophene Organic Semiconductor. Journal of Physical Chemistry C, 2010, 114, 2334-2340.	3.1	73
128	First-principles semiclassical initial value representation molecular dynamics. Physical Chemistry Chemical Physics, 2009, 11, 3861.	2.8	70
129	A two-qubit photonic quantum processor and its application to solving systems of linear equations. Scientific Reports, 2014, 4, 6115.	3.3	70
130	A Bayesian approach to calibrating high-throughput virtual screening results and application to organic photovoltaic materials. Materials Horizons, 2016, 3, 226-233.	12.2	70
131	Machine learning for quantum dynamics: deep learning of excitation energy transfer properties. Chemical Science, 2017, 8, 8419-8426.	7.4	70
132	Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer. Quantum Science and Technology, 2019, 4, 045005.	5.8	69
133	Autonomous Molecular Design: Then and Now. ACS Applied Materials & Interfaces, 2019, 11, 24825-24836.	8.0	69
134	A study of heuristic guesses for adiabatic quantum computation. Quantum Information Processing, 2011, 10, 33-52.	2.2	67
135	Conformation and Electronic Population Transfer in Membrane-Supported Self-Assembled Porphyrin Dimers by 2D Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 10757-10770.	2.6	67
136	Bayesian network structure learning using quantum annealing. European Physical Journal: Special Topics, 2015, 224, 163-188.	2.6	67
137	Materials Acceleration Platforms: On the way to autonomous experimentation. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100370.	5.9	67
138	Organic molecules with inverted gaps between first excited singlet and triplet states and appreciable fluorescence rates. Matter, 2021, 4, 1654-1682.	10.0	67
139	Time-Dependent Density Functional Theory for Open Quantum Systems with Unitary Propagation. Physical Review Letters, 2010, 104, 043001.	7.8	65
140	Exciton transport in thin-film cyanine dye J-aggregates. Journal of Chemical Physics, 2012, 137, 034109.	3.0	65
141	Quantum computing at the frontiers of biological sciences. Nature Methods, 2021, 18, 701-709.	19.0	64
142	Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES. Chemical Science, 2021, 12, 7079-7090.	7.4	64
143	Soft pseudopotentials for efficient quantum Monte Carlo calculations: From Be to Ne and Al to Ar. Journal of Chemical Physics, 2001, 114, 7790-7794.	3.0	63
144	Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria. Journal of Physical Chemistry Letters, 2012, 3, 2357-2361.	4.6	63

#	Article	IF	CITATIONS
145	Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17615-17620.	7.1	62
146	A Bayesian Approach to Predict Solubility Parameters. Advanced Theory and Simulations, 2019, 2, 1800069.	2.8	62
147	Failure of Conventional Density Functionals for the Prediction of Molecular Crystal Polymorphism: A Quantum Monte Carlo Study. Journal of Physical Chemistry Letters, 2010, 1, 1789-1794.	4.6	61
148	Local protein solvation drives direct down-conversion in phycobiliprotein PC645 via incoherent vibronic transport. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3342-E3350.	7.1	61
149	A Mixed Quantum Chemistry/Machine Learning Approach for the Fast and Accurate Prediction of Biochemical Redox Potentials and Its Large-Scale Application to 315†000 Redox Reactions. ACS Central Science, 2019, 5, 1199-1210.	11.3	61
150	Discovery of Calciumâ€Metal Alloy Anodes for Reversible Caâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1802994.	19.5	61
151	G <scp>ryffin</scp> : An algorithm for Bayesian optimization of categorical variables informed by expert knowledge. Applied Physics Reviews, 2021, 8, .	11.3	61
152	Environment-assisted quantum transport in ordered systems. New Journal of Physics, 2012, 14, 053041.	2.9	58
153	Efficient quantum circuits for diagonal unitaries without ancillas. New Journal of Physics, 2014, 16, 033040.	2.9	58
154	Temperature-dependent conformations of exciton-coupled Cy3 dimers in double-stranded DNA. Journal of Chemical Physics, 2018, 148, 085101.	3.0	58
155	Adiabatic quantum simulators. AIP Advances, 2011, 1, .	1.3	57
156	UV-Vis spectrophotometry of quinone flow battery electrolyte for <i>in situ</i> monitoring and improved electrochemical modeling of potential and quinhydrone formation. Physical Chemistry Chemical Physics, 2017, 19, 31684-31691.	2.8	57
157	Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree–Fock. ACS Central Science, 2018, 4, 559-566.	11.3	57
158	Designing and understanding light-harvesting devices with machine learning. Nature Communications, 2020, 11 , 4587.	12.8	57
159	Selfâ€Driving Platform for Metal Nanoparticle Synthesis: Combining Microfluidics and Machine Learning. Advanced Functional Materials, 2021, 31, 2106725.	14.9	57
160	Nonradiative lifetimes in intermediate band photovoltaicsâ€"Absence of lifetime recovery. Journal of Applied Physics, 2012, 112, .	2.5	56
161	Disentangling Electronic and Vibronic Coherences in Two-Dimensional Echo Spectra. Journal of Physical Chemistry B, 2013, 117, 9380-9385.	2.6	55
162	Topologically protected excitons in porphyrin thinÂfilms. Nature Materials, 2014, 13, 1026-1032.	27.5	55

#	Article	IF	Citations
163	Quantum Monte Carlo for electronic excitations of free-base porphyrin. Journal of Chemical Physics, 2004, 120, 3049-3050.	3.0	54
164	Linear assignment maps for correlated system-environment states. Physical Review A, 2010, 81, .	2.5	54
165	Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods. Journal of Chemical Theory and Computation, 2013, 9, 4360-4373.	5.3	53
166	Exponentially more precise quantum simulation of fermions in the configuration interaction representation. Quantum Science and Technology, 2018, 3, 015006.	5.8	53
167	Quantum algorithm for molecular properties and geometry optimization. Journal of Chemical Physics, 2009, 131, 224102.	3.0	52
168	Prediction of the Derivative Discontinuity in Density Functional Theory from an Electrostatic Description of the Exchange and Correlation Potential. Physical Review Letters, 2011, 107, 183002.	7.8	52
169	Demon-like algorithmic quantum cooling and its realization with quantum optics. Nature Photonics, 2014, 8, 113-118.	31.4	52
170	Introducing a New Potential Figure of Merit for Evaluating Microstructure Stability in Photovoltaic Polymer-Fullerene Blends. Journal of Physical Chemistry C, 2017, 121, 18153-18161.	3.1	52
171	Variational Quantum Factoring. Lecture Notes in Computer Science, 2019, , 74-85.	1.3	52
172	Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance. Scientific Reports, 2011, 1, 88 .	3.3	51
173	Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers. Journal of Chemical Physics, 2011, 134, 134505.	3.0	51
174	Language models can learn complex molecular distributions. Nature Communications, 2022, 13, .	12.8	51
175	Digital quantum simulation of the statistical mechanics of a frustrated magnet. Nature Communications, 2012, 3, 880.	12.8	50
176	Compressed Sensing for Multidimensional Spectroscopy Experiments. Journal of Physical Chemistry Letters, 2012, 3, 2697-2702.	4.6	50
177	Bounding the costs of quantum simulation of many-body physics in real space. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 305301.	2.1	47
178	Preparation of many-body states for quantum simulation. Journal of Chemical Physics, 2009, 130, 194105.	3.0	46
179	Coherent Exciton Dynamics in Supramolecular Light-Harvesting Nanotubes Revealed by Ultrafast Quantum Process Tomography. ACS Nano, 2014, 8, 5527-5534.	14.6	46
180	Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle. Scientific Reports, 2015, 5, 8009.	3.3	46

#	Article	IF	CITATIONS
181	A Nanophotonic Structure Containing Living Photosynthetic Bacteria. Small, 2017, 13, 1701777.	10.0	46
182	Fighting the curse of dimensionality in first-principles semiclassical calculations: Non-local reference states for large number of dimensions. Journal of Chemical Physics, 2011, 135, 214108.	3.0	45
183	Reproducing Deep Tunneling Splittings, Resonances, and Quantum Frequencies in Vibrational Spectra From a Handful of Direct Ab Initio Semiclassical Trajectories. Journal of Physical Chemistry Letters, 2013, 4, 3407-3412.	4.6	45
184	Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units. Computing in Science and Engineering, 2010, 12, 40-51.	1.2	44
185	Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal–Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer. ACS Applied Materials & Interfaces, 2016, 8, 24983-24988.	8.0	44
186	Tunneling across SAMs Containing Oligophenyl Groups. Journal of Physical Chemistry C, 2016, 120, 11331-11337.	3.1	43
187	Interface Molecular Engineering for Laminated Monolithic Perovskite/Silicon Tandem Solar Cells with 80.4% Fill Factor. Advanced Functional Materials, 2019, 29, 1901476.	14.9	43
188	A feasible approach for automatically differentiable unitary coupled-cluster on quantum computers. Chemical Science, 2021, 12, 3497-3508.	7.4	43
189	Multipartite quantum entanglement evolution in photosynthetic complexes. Journal of Chemical Physics, 2012, 137, 074112.	3.0	42
190	Computational complexity in electronic structure. Physical Chemistry Chemical Physics, 2013, 15, 397-411.	2.8	42
191	Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis. ACS Central Science, 2017, 3, 322-328.	11.3	42
192	A witness for coherent electronic vs vibronic-only oscillations in ultrafast spectroscopy. Journal of Chemical Physics, 2012, 136, 234501.	3.0	41
193	Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Photosynthesis Research, 2014, 120, 273-289.	2.9	41
194	Anomalously Rapid Tunneling: Charge Transport across Self-Assembled Monolayers of Oligo(ethylene) Tj ETQq0 (O 0155BT /C	Overlock 10 Ti
195	Single-Atom Heat Machines Enabled by Energy Quantization. Physical Review Letters, 2018, 120, 170601.	7.8	41
196	Precise Control of Thermal and Redox Properties of Organic Holeâ€Transport Materials. Angewandte Chemie - International Edition, 2018, 57, 15529-15533.	13.8	41
197	Experimental High-Dimensional Greenberger-Horne-Zeilinger Entanglement with Superconducting Transmon Qutrits. Physical Review Applied, 2022, 17, .	3.8	41
198	Application of compressed sensing to the simulation of atomic systems. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13928-13933.	7.1	40

#	Article	IF	Citations
199	Proposal for Microwave Boson Sampling. Physical Review Letters, 2016, 117, 140505.	7.8	40
200	Navigating through the Maze of Homogeneous Catalyst Design with Machine Learning. Trends in Chemistry, $2021, 3, 96-110$.	8.5	39
201	Time-dependent current-density functional theory for generalized open quantum systems. Physical Chemistry Chemical Physics, 2009, 11, 4509.	2.8	38
202	Effect of Molecular Structure of Quinones and Carbon Electrode Surfaces on the Interfacial Electron Transfer Process. ACS Applied Energy Materials, 2020, 3, 1933-1943.	5.1	38
203	Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule, 2018, 2, 1907-1908.	24.0	37
204	Closed-loop discovery platform integration is needed for artificial intelligence to make an impact in drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 1-4.	5.0	37
205	Charge Tunneling along Short Oligoglycine Chains. Angewandte Chemie - International Edition, 2015, 54, 14743-14747.	13.8	36
206	TEQUILA: a platform for rapid development of quantum algorithms. Quantum Science and Technology, 2021, 6, 024009.	5.8	36
207	First principles semiclassical calculations of vibrational eigenfunctions. Journal of Chemical Physics, 2011, 134, 234103.	3.0	35
208	Relaxation and dephasing in open quantum systems time-dependent density functional theory: Properties of exact functionals from an exactly-solvable model system. Chemical Physics, 2011, 391, 130-142.	1.9	35
209	Quantum Nonlinear Optics with Polar J-Aggregates in Microcavities. Journal of Physical Chemistry Letters, 2014, 5, 3708-3715.	4.6	34
210	Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions. Scientific Reports, 2014, 4, 7022.	3.3	34
211	Photochemical Control of Exciton Superradiance in Light-Harvesting Nanotubes. ACS Nano, 2018, 12, 4556-4564.	14.6	34
212	The Cyclopropane Ring as a Reporter of Radical Leaving-Group Reactivity for Ni-Catalyzed C(sp ³)–O Arylation. Journal of the American Chemical Society, 2020, 142, 13246-13254.	13.7	34
213	Assigning confidence to molecular property prediction. Expert Opinion on Drug Discovery, 2021, 16, 1009-1023.	5.0	34
214	Engineering directed excitonic energy transfer. Applied Physics Letters, 2010, 96, 093114.	3.3	33
215	Unification of witnessing initial system-environment correlations and witnessing non-Markovianity. Europhysics Letters, 2012, 99, 20010.	2.0	33
216	Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions. Chemical Science, 2016, 7, 1712-1728.	7.4	33

#	Article	IF	CITATIONS
217	Reducing Qubit Requirements while Maintaining Numerical Precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach. Journal of Physical Chemistry Letters, 2021, 12, 663-673.	4.6	33
218	Meta-Variational Quantum Eigensolver: Learning Energy Profiles of Parameterized Hamiltonians for Quantum Simulation. PRX Quantum, 2021, 2, .	9.2	33
219	Mechanistic Regimes of Vibronic Transport in a Heterodimer and the Design Principle of Incoherent Vibronic Transport in Phycobiliproteins. Journal of Physical Chemistry Letters, 2018, 9, 2665-2670.	4.6	32
220	qTorch: The quantum tensor contraction handler. PLoS ONE, 2018, 13, e0208510.	2.5	31
221	Olympus: a benchmarking framework for noisy optimization and experiment planning. Machine Learning: Science and Technology, 2021, 2, 035021.	5.0	31
222	Prediction and Theoretical Characterization of p-Type Organic Semiconductor Crystals for Field-Effect Transistor Applications. Topics in Current Chemistry, 2014, 345, 95-138.	4.0	30
223	Efficiency of energy funneling in the photosystem II supercomplex of higher plants. Chemical Science, 2016, 7, 4174-4183.	7.4	30
224	A Study of the Degree of Fluorination in Regioregular Poly(3-hexylthiophene). Macromolecules, 2017, 50, 162-174.	4.8	30
225	Flow Batteries: Alkaline Benzoquinone Aqueous Flow Battery for Largeâ€Scale Storage of Electrical Energy (Adv. Energy Mater. 8/2018). Advanced Energy Materials, 2018, 8, 1870034.	19.5	30
226	<i>In Situ</i> Electron Microscopy Investigation of Sodiation of Titanium Disulfide Nanoflakes. ACS Nano, 2019, 13, 9421-9430.	14.6	30
227	Fast Delocalization Leads To Robust Long-Range Excitonic Transfer in a Large Quantum Chlorosome Model. Nano Letters, 2015, 15, 1722-1729.	9.1	29
228	Oscillatory Active-Site Motions Correlate with Kinetic Isotope Effects in Formate Dehydrogenase. ACS Catalysis, 2019, 9, 11199-11206.	11.2	29
229	Positivity in the presence of initial system-environment correlation. Physical Review A, 2012, 86, .	2.5	28
230	Probing biological light-harvesting phenomena by optical cavities. Physical Review B, 2012, 85, .	3.2	28
231	Constructing Naâ€lon Cathodes via Alkali‧ite Substitution. Advanced Functional Materials, 2020, 30, 1910840.	14.9	28
232	Renewables need a grand-challenge strategy. Nature, 2016, 538, 30-30.	27.8	27
233	Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation. Journal of Chemical Theory and Computation, 2016, 12, 3097-3108.	5.3	27
234	Predicting Feasible Organic Reaction Pathways Using Heuristically Aided Quantum Chemistry. Journal of Chemical Theory and Computation, 2019, 15, 4099-4112.	5.3	27

#	Article	IF	Citations
235	When robotics met fluidics. Lab on A Chip, 2020, 20, 709-716.	6.0	27
236	Examination of pigments on Thai manuscripts: the first identification of copper citrate. Journal of Raman Spectroscopy, 2008, 39, 1057-1065.	2.5	26
237	Temperature-Dependent Conformations of a Membrane Supported Zinc Porphyrin Tweezer by 2D Fluorescence Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 6171-6184.	2.5	26
238	Resource efficient gadgets for compiling adiabatic quantum optimization problems. Annalen Der Physik, 2013, 525, 877-888.	2.4	26
239	Excitonics: A Set of Gates for Molecular Exciton Processing and Signaling. ACS Nano, 2018, 12, 6410-6420.	14.6	26
240	Mutual information-assisted adaptive variational quantum eigensolver. Quantum Science and Technology, 2021, 6, 035001.	5.8	26
241	Simplified Sum-Over-States Approach for Predicting Resonance Raman Spectra. Application to Nucleic Acid Bases. Journal of Physical Chemistry Letters, 2011, 2, 1254-1260.	4.6	25
242	Sufficient and Necessary Condition for Zero Quantum Entropy Rates under any Coupling to the Environment. Physical Review Letters, 2011, 106, 050403.	7.8	25
243	On thermodynamic inconsistencies in several photosynthetic and solar cell models and how to fix them. Chemical Science, 2017, 8, 1008-1014.	7.4	25
244	Computer Vision for Recognition of Materials and Vessels in Chemistry Lab Settings and the Vector-LabPics Data Set. ACS Central Science, 2020, 6, 1743-1752.	11.3	25
245	A sparse algorithm for the evaluation of the local energy in quantum Monte Carlo. Journal of Computational Chemistry, 2005, 26, 708-715.	3.3	24
246	Zori 1.0: A parallel quantum Monte Carlo electronic structure package. Journal of Computational Chemistry, 2005, 26, 856-862.	3.3	24
247	Simulation of classical thermal states on a quantum computer: A transfer-matrix approach. Physical Review A, 2010, 82, .	2.5	24
248	Coherent Dynamics of Mixed Frenkel and Charge-Transfer Excitons in Dinaphtho $[2,3-\langle i\rangle b < i\rangle = 23 \le 2.4 \le 1.5 $	4.6	24
249	MultiDK: A Multiple Descriptor Multiple Kernel Approach for Molecular Discovery and Its Application to Organic Flow Battery Electrolytes. Journal of Chemical Information and Modeling, 2017, 57, 657-668.	5.4	24
250	Discovery of blue singlet exciton fission molecules via a high-throughput virtual screening and experimental approach. Journal of Chemical Physics, 2019, 151, 121102.	3.0	24
251	Measurement of the absolute Raman cross section of the optical phonon in silicon. Solid State Communications, 2011, 151, 553-556.	1.9	23
252	Emulation of complex open quantum systems using superconducting qubits. Quantum Information Processing, 2017, 16, 1.	2.2	23

#	Article	IF	CITATIONS
253	Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy. Nano Letters, 2018, 18, 1600-1607.	9.1	23
254	A machine learning workflow for molecular analysis: application to melting points. Machine Learning: Science and Technology, 2020, 1, 025015.	5.0	23
255	Scientific intuition inspired by machine learning-generated hypotheses. Machine Learning: Science and Technology, 2021, 2, 025027.	5.0	23
256	Time-dependent density functional theory of open quantum systems in the linear-response regime. Journal of Chemical Physics, 2011, 134, 074116.	3.0	22
257	Diffusion Monte Carlo Study of <i>Para</i> Diiodobenzene Polymorphism Revisited. Journal of Chemical Theory and Computation, 2015, 11, 907-917.	5. 3	22
258	Quantum chemistry reveals thermodynamic principles of redox biochemistry. PLoS Computational Biology, 2018, 14, e1006471.	3.2	22
259	Deep molecular dreaming: inverse machine learning for de-novo molecular design and interpretability with surjective representations. Machine Learning: Science and Technology, 2021, 2, 03LT02.	5.0	22
260	Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design. , 2022, 1, 390-404.		22
261	Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems. New Journal of Physics, 2016, 18, 073003.	2.9	21
262	On the Long-Range Exciton Transport in Molecular Systems: The Application to H-Aggregated Heterotriangulene Chains. Journal of Physical Chemistry C, 2017, 121, 24994-25002.	3.1	21
263	Mapping Forbidden Emission to Structure in Self-Assembled Organic Nanoparticles. Journal of the American Chemical Society, 2018, 140, 15827-15841.	13.7	21
264	High-Voltage-Assisted Mechanical Stabilization of Single-Molecule Junctions. Nano Letters, 2018, 18, 4727-4733.	9.1	20
265	Design rules for high mobility xanthene-based hole transport materials. Chemical Science, 2019, 10, 8360-8366.	7.4	20
266	Generalized Kasha's Model: T-Dependent Spectroscopy Reveals Short-Range Structures of 2D Excitonic Systems. CheM, 2019, 5, 3135-3150.	11.7	20
267	Optical absorption and emission properties of end-capped oligothienoacenes: A joint theoretical and experimental study. Organic Electronics, 2010, 11, 1701-1712.	2.6	19
268	Optimized low-depth quantum circuits for molecular electronic structure using a separable-pair approximation. Physical Review A, 2022, 105, .	2.5	19
269	Quantum Computing Without Wavefunctions: Time-Dependent Density Functional Theory for Universal Quantum Computation. Scientific Reports, 2012, 2, 391.	3.3	18
270	Measurement of the absolute Raman cross section of the optical phonons in type Ia natural diamond. Solid State Communications, 2012, 152, 204-209.	1.9	18

#	Article	lF	CITATIONS
271	Feynman's clock, a new variational principle, and parallel-in-time quantum dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3901-9.	7.1	18
272	Optical monitoring of polymerizations in droplets with high temporal dynamic range. Chemical Science, 2020, 11, 2647-2656.	7.4	18
273	Compact wavefunctions from compressed imaginary time evolution. RSC Advances, 2015, 5, 102277-102283.	3.6	17
274	Quantum process tomography by 2D fluorescence spectroscopy. Journal of Chemical Physics, 2015, 142, 212442.	3.0	17
275	Oxidation of rubrene, and implications for device stability. Journal of Materials Chemistry C, 2018, 6, 3757-3761.	5.5	17
276	Automated design of superconducting circuits and its application to 4-local couplers. Npj Quantum Information, 2021, 7, .	6.7	17
277	Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments. Physical Review X, 2021, 11, .	8.9	17
278	Modeling Coherent Anti-Stokes Raman Scattering with Time-Dependent Density Functional Theory: Vacuum and Surface Enhancement Journal of Physical Chemistry Letters, 2011, 2, 1849-1854.	4.6	16
279	Confined organization of fullerene units along high polymer chains. Journal of Materials Chemistry C, 2013, 1, 5747.	5.5	16
280	Linear-algebraic bath transformation for simulating complex open quantum systems. New Journal of Physics, 2014, 16, 123008.	2.9	16
281	Natural evolutionary strategies for variational quantum computation. Machine Learning: Science and Technology, 2021, 2, 045012.	5.0	16
282	Neural message passing on high order paths. Machine Learning: Science and Technology, 2021, 2, 045009.	5.0	16
283	Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light. Scientific Reports, 2014, 4, 5057.	3.3	15
284	Adiabatic quantum optimization in the presence of discrete noise: Reducing the problem dimensionality. Physical Review A, 2015, 92, .	2.5	15
285	Precise Control of Thermal and Redox Properties of Organic Holeâ€√ransport Materials. Angewandte Chemie, 2018, 130, 15755-15759.	2.0	15
286	Team-Based Learning for Scientific Computing and Automated Experimentation: Visualization of Colored Reactions. Journal of Chemical Education, 2020, 97, 689-694.	2.3	15
287	Anion Stabilization in Electrostatic Environments. Journal of Physical Chemistry Letters, 2011, 2, 682-688.	4.6	14
288	Temperature and Carbon Assimilation Regulate the Chlorosome Biogenesis in Green Sulfur Bacteria. Biophysical Journal, 2013, 105, 1346-1356.	0.5	14

#	Article	IF	CITATIONS
289	Practical witness for electronic coherences. Journal of Chemical Physics, 2014, 141, 244109.	3.0	14
290	Clock quantum Monte Carlo technique: An imaginary-time method for real-time quantum dynamics. Physical Review A, 2015, 91, .	2.5	14
291	Quantum Monte Carlo methods for the solution of the SchrĶdinger equation for molecular systems. Handbook of Numerical Analysis, 2003, 10, 485-535.	1.8	13
292	Scaling and Localization Lengths of a Topologically Disordered System. Physical Review Letters, 2011, 106, 156405.	7.8	13
293	Exciton coherence lifetimes from electronic structure. Journal of Chemical Physics, 2012, 136, 104510.	3.0	13
294	Electronic structure calculations in arbitrary electrostatic environments. Journal of Chemical Physics, 2012, 136, 024101.	3.0	13
295	Equivalence between spin Hamiltonians and boson sampling. Physical Review A, 2017, 95, .	2.5	13
296	Disentanglement of excited-state dynamics with implications for FRET measurements: two-dimensional electronic spectroscopy of a BODIPY-functionalized cavitand. Chemical Science, 2018, 9, 3694-3703.	7.4	13
297	Quantum computer-aided design of quantum optics hardware. Quantum Science and Technology, 2021, 6, 035010.	5.8	13
298	Quantum process estimation via generic two-body correlations. Physical Review A, 2010, 81, .	2.5	12
299	Förster Coupling in Nanoparticle Excitonic Circuits. Nano Letters, 2010, 10, 2849-2856.	9.1	12
300	Can Mixed-Metal Surfaces Provide an Additional Enhancement to SERS?. Journal of Physical Chemistry C, 2012, 116, 15568-15575.	3.1	12
301	Electromagnetic Study of the Chlorosome Antenna Complex of <i>Chlorobium tepidum</i> . ACS Nano, 2014, 8, 3884-3894.	14.6	12
302	From Absorption Spectra to Charge Transfer in Nanoaggregates of Oligomers with Machine Learning. ACS Nano, 2020, 14, 6589-6598.	14.6	12
303	Coronene derivatives for transparent organic photovoltaics through inverse materials design. Journal of Materials Chemistry C, 2021, 9, 1310-1317.	5.5	12
304	An artificial spiking quantum neuron. Npj Quantum Information, 2021, 7, .	6.7	12
305	Golem: an algorithm for robust experiment and process optimization. Chemical Science, 2021, 12, 14792-14807.	7.4	12
306	Quantum Computer-Aided Design: Digital Quantum Simulation of Quantum Processors. Physical Review Applied, 2021, 16, .	3.8	12

#	Article	IF	CITATIONS
307	Improving the accuracy of the variational quantum eigensolver for molecular systems by the explicitly-correlated perturbative [2] $<$ sub $>$ R12 $<$ /sub $><$ b $>-<$ /b $>$ correction. Physical Chemistry Chemical Physics, 2022, 24, 13550-13564.	2.8	12
308	Learning interpretable representations of entanglement in quantum optics experiments using deep generative models. Nature Machine Intelligence, 2022, 4, 544-554.	16.0	12
309	Direct estimation of single- and two-qubit Hamiltonians and relaxation rates. Physical Review A, 2008, 77, .	2.5	11
310	Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs. Journal of Chemical Theory and Computation, 2015, 11, 2053-2062.	5.3	11
311	Absence of Selection for Quantum Coherence in the Fenna–Matthews–Olson Complex: A Combined Evolutionary and Excitonic Study. ACS Central Science, 2017, 3, 1086-1095.	11.3	11
312	Reply to â€~Assessing the impact of generative AI on medicinal chemistry'. Nature Biotechnology, 2020, 38, 146-146.	17.5	11
313	A thermodynamic atlas of carbon redox chemical space. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32910-32918.	7.1	11
314	Organic Photovoltaics., 2013,, 423-442.		10
315	Computational complexity of time-dependent density functional theory. New Journal of Physics, 2014, 16, 083035.	2.9	10
316	Learning quantum dynamics with latent neural ordinary differential equationsÂ. Physical Review A, 2022, 105, .	2.5	10
317	Electronic transition moments of 6-methyl isoxanthopterin-a fluorescent analogue of the nucleic acid base guanine. Nucleic Acids Research, 2013, 41, 995-1004.	14.5	9
318	State-by-State Investigation of Destructive Interference in Resonance Raman Spectra of Neutral Tyrosine and the Tyrosinate Anion with the Simplified Sum-over-States Approach. Journal of Physical Chemistry A, 2014, 118, 9675-9686.	2.5	9
319	Reagents for electrophilic amination: A quantum Monte Carlo study. Journal of Chemical Physics, 2007, 126, 204308.	3.0	8
320	A correlated-polaron electronic propagator: Open electronic dynamics beyond the Born-Oppenheimer approximation. Journal of Chemical Physics, 2012, 137, 22A547.	3.0	8
321	Compressed Sensing for the Fast Computation of Matrices: Application to Molecular Vibrations. ACS Central Science, 2015, 1, 24-32.	11.3	8
322	Origin of the $1/\hat{\Pi}\pm$ spectral noise in chaotic and regular quantum systems. Physical Review E, 2018, 98, .	2.1	8
323	Analog Quantum Simulation of Non-Condon Effects in Molecular Spectroscopy. ACS Photonics, 2021, 8, 2007-2016.	6.6	8
324	Noise Robustness and Experimental Demonstration of a Quantum Generative Adversarial Network for Continuous Distributions. Advanced Quantum Technologies, 2021, 4, 2000069.	3.9	8

#	Article	IF	Citations
325	Routescore: Punching the Ticket to More Efficient Materials Development. ACS Central Science, 2022, 8, 122-131.	11.3	8
326	A Benchmark Quantum Monte Carlo Study of Molecular Crystal Polymorphism: A Challenging Case for Density-Functional Theory. ACS Symposium Series, 2012, , 101-117.	0.5	7
327	The Kitaev–Feynman clock for open quantum systems. New Journal of Physics, 2014, 16, 113066.	2.9	7
328	Quantum simulation with a boson sampling circuit. Physical Review A, 2016, 94, .	2.5	7
329	Boramidine: A Versatile Structural Motif for the Design of Fluorescent Heterocycles. Journal of the American Chemical Society, 2020, 142, 13544-13549.	13.7	7
330	A molecular computing approach to solving optimization problems via programmable microdroplet arrays. Matter, 2021, 4, 1107-1124.	10.0	7
331	MPGVAE: improved generation of small organic molecules using message passing neural nets. Machine Learning: Science and Technology, 2021, 2, 045010.	5.0	7
332	Quantum computation of eigenvalues within target intervals. Quantum Science and Technology, 2021, 6, 015004.	5.8	7
333	Curiosity in exploring chemical spaces: intrinsic rewards for molecular reinforcement learning. Machine Learning: Science and Technology, 2022, 3, 035008.	5.0	7
334	Quantum Monte Carlo: Theory and Application to Molecular Systems. Advances in Quantum Chemistry, 2005, , 209-226.	0.8	6
335	Discrete Single-Photon Quantum Walks With Tunable Decoherence. , 2010, , .		6
336	Characterization and quantification of the role of coherence in ultrafast quantum biological experiments using quantum master equations, atomistic simulations, and quantum process tomography. Procedia Chemistry, 2011, 3, 332-346.	0.7	6
337	Parametric hierarchical matrix approach for the wideband optical response of large-scale molecular aggregates. Journal of Applied Physics, 2013, 114, 164315.	2.5	6
338	Learning More, with Less. ACS Central Science, 2017, 3, 275-277.	11.3	6
339	Molecular realization of a quantum <tt>NAND</tt> tree. Quantum Science and Technology, 2019, 4, 015013.	5.8	6
340	Optically Induced Molecular Logic Operations. ACS Nano, 2020, 14, 15248-15255.	14.6	6
341	Machine learning for analysing ab initio molecular dynamics simulations. Journal of Physics: Conference Series, 2020, 1412, 042003.	0.4	6
342	In silico design of microporous polymers for chemical separations and storage. Current Opinion in Chemical Engineering, 2022, 36, 100795.	7.8	6

#	Article	IF	CITATIONS
343	Path integral Monte Carlo with importance sampling for excitons interacting with an arbitrary phonon bath. Journal of Chemical Physics, 2012, 137, 22A538.	3.0	5
344	Optical Spectra of p-Doped PEDOT Nanoaggregates Provide Insight into the Material Disorder. ACS Energy Letters, 2016, 1, 1100-1105.	17.4	5
345	Machine Learning and Big-Data in Computational Chemistry. , 2020, , 1939-1962.		5
346	Predicting 3D shapes, masks, and properties of materials inside transparent containers, using the TransProteus CGI dataset. , 0 , , .		5
347	Toward Quantum Computing with Molecular Electronics. Journal of Chemical Theory and Computation, 2022, 18, 3318-3326.	5. 3	5
348	Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions. Frontiers in Chemistry, 2013, 1, 26.	3.6	4
349	A stochastic reorganizational bath model for electronic energy transfer. Journal of Chemical Physics, 2014, 140, 244103.	3.0	4
350	Quantum Computer Simulates Excited States of Molecule. Physics Magazine, 2018, 11, .	0.1	4
351	Machine Learning and Big-Data in Computational Chemistry. , 2018, , 1-24.		4
352	The influence of sorbitol doping on aggregation and electronic properties of PEDOT:PSS: a theoretical study. Machine Learning: Science and Technology, 2021, 2, 01LT01.	5.0	4
353	Materials and Techniques of Thai Painting. Materials Research Society Symposia Proceedings, 2007, 1047, 4.	0.1	3
354	Remarks on time-dependent [current]-density functional theory for open quantum systems. Physical Chemistry Chemical Physics, 2013, 15, 12626.	2.8	3
355	34.4: <i>Invited Paper</i> : Combinatorial Design of OLEDâ€Emitting Materials. Digest of Technical Papers SID International Symposium, 2015, 46, 505-506.	0.3	3
356	Benchmarking compressed sensing, super-resolution, and filter diagonalization. International Journal of Quantum Chemistry, 2016, 116, 1097-1106.	2.0	3
357	Turbocharged molecular discovery of OLED emitters: from high-throughput quantum simulation to highly efficient TADF devices. Proceedings of SPIE, 2016, , .	0.8	3
358	Measurement of the thirdâ€order nonlinear optical susceptibility χ ⁽³⁾ for the 1002â€cm ^{–1} mode of benzenethiol using coherent antiâ€Stokes Raman scattering with continuousâ€wave diode lasers. Journal of Raman Spectroscopy, 2012, 43, 911-916.	2.5	2
359	Accelerating the computation of bath spectral densities with super-resolution. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	2
360	The role of interparticle interaction and environmental coupling in a two-particle open quantum system. Physical Chemistry Chemical Physics, 2016, 18, 436-447.	2.8	2

#	Article	IF	CITATIONS
361	Taking six-dimensional spectra in finite time. Science, 2017, 356, 1333-1333.	12.6	2
362	Quantum Coherences as a Thermodynamic Potential. Open Systems and Information Dynamics, 2019, 26, 1950022.	1.2	2
363	Film Fabrication Techniques: Beyond Ternary OPV: Highâ€Throughput Experimentation and Selfâ€Driving Laboratories Optimize Multicomponent Systems (Adv. Mater. 14/2020). Advanced Materials, 2020, 32, 2070110.	21.0	2
364	A forward view for $\langle i \rangle$ Digital Discovery $\langle i \rangle$: the scientific challenges of the twenty-first century require accelerated discovery approaches., 2022, 1, 6-7.		2
365	Updated Calibrated Model for the Prediction of Molecular Frontier Orbital Energies and Its Application to Boron Subphthalocyanines. Journal of Chemical Information and Modeling, 2022, 62, 829-840.	5.4	2
366	Linear-Scaling Evaluation of the Local Energy in Quantum Monte Carlo. ACS Symposium Series, 2006, , 55-68.	0.5	1
367	Observation of Topologically Protected Bound States in Photonic Quantum Walks. , 2011, , .		1
368	Observation of topologically protected bound states in photonic quantum walks. , 2011, , .		1
369	Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors. Journal of Physical Chemistry Letters, 2018, 9, 1721-1727.	4.6	1
370	You Wouldn't Download a Molecule! Now, ChemSCAD Makes It Possible. ACS Central Science, 2021, 7, 228-230.	11.3	1
371	Introduction to the William A. Lester, Jr., Festschrift. Journal of Physical Chemistry A, 2008, 112, 1965-1966.	2. 5	0
372	Response to Commentary on "Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions― Frontiers in Chemistry, 2013, 1, 33.	3.6	0
373	Response to: "Comment on benchmarking compressed sensing, superâ€resolution, and filter diagonalizationâ€. International Journal of Quantum Chemistry, 2016, 116, 1818-1821.	2.0	0
374	funsies: A minimalist, distributed and dynamic workflow engine. Journal of Open Source Software, 2021, 6, 3274.	4.6	0
375	Recent Developments in Quantum Monte Carlo: Methods and Applications. AIP Conference Proceedings, 2007, , .	0.4	0
376	Quantum Chemistry on a Quantum Computer: First Steps and Prospects. , 2009, , .		0
377	From 4T to 2T solution processed silicon/perovskite tandems solar cells. , 0, , .		0