Fang Geng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6355645/publications.pdf

Version: 2024-02-01

		147801	233421
116	3,155	31	45
papers	citations	h-index	g-index
116	116	116	1670
110	110	110	1070
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Prospects for Proanthocyanidins from Grape Seed: Extraction Technologies and Diverse Bioactivity. Food Reviews International, 2023, 39, 349-368.	8.4	8
2	Interaction between four galactans with different structural characteristics and gut microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 3653-3663.	10.3	12
3	Recent developments in off-odor formation mechanism and the potential regulation by starter cultures in dry-cured ham. Critical Reviews in Food Science and Nutrition, 2023, 63, 8781-8795.	10.3	17
4	Improvement of the solubility and emulsification of rice protein isolate by the <scp>pH</scp> shift treatment. International Journal of Food Science and Technology, 2023, 58, 355-366.	2.7	9
5	Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Critical Reviews in Food Science and Nutrition, 2023, 63, 12073-12088.	10.3	45
6	Sweet tea (<i>Lithocarpus polystachyus</i> rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits. Critical Reviews in Food Science and Nutrition, 2022, 62, 917-934.	10.3	56
7	Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Critical Reviews in Food Science and Nutrition, 2022, 62, 2855-2871.	10.3	34
8	Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Critical Reviews in Food Science and Nutrition, 2022, 62, 8646-8674.	10.3	20
9	Comparative structural and technoâ€functional elucidation of fullâ€fat and defatted flaxseed extracts: implication of atmospheric pressure plasma jet. Journal of the Science of Food and Agriculture, 2022, 102, 823-835.	3.5	7
10	Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chemistry, 2022, 368, 130772.	8.2	34
11	LC-MS/MS-based metabolomics and sensory evaluation characterize metabolites and texture of normal and spoiled dry-cured hams. Food Chemistry, 2022, 371, 131156.	8.2	49
12	Influences of microwave exposure to flaxseed on the physicochemical stability of oil bodies: Implication of interface remodeling. Food Chemistry, 2022, 368, 130802.	8.2	20
13	In vitro digestion of eight types of wholegrains and their dietary recommendations for different populations. Food Chemistry, 2022, 370, 131069.	8.2	21
14	Ovomucin may be the key protein involved in the early formation of egg-white thermal gel. Food Chemistry, 2022, 366, 130596.	8.2	55
15	Mechanism of differences in characteristics of thick/thin egg whites during storage: Physicochemical, functional and molecular structure characteristics analysis. Food Chemistry, 2022, 369, 130828.	8.2	31
16	Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites. Food Chemistry, 2022, 371, 131106.	8.2	47
17	Mechanism of effect of heating temperature on functional characteristics of thick egg white. LWT - Food Science and Technology, 2022, 154, 112807.	5.2	24
18	Transcriptome-based insights into the calcium transport mechanism of chick chorioallantoic membrane. Food Science and Human Wellness, 2022, 11, 383-392.	4.9	4

#	Article	IF	CITATIONS
19	Optimization of preparation process of egg white protein/ <i>ΰ</i> â€carrageenan composite film. Journal of Food Processing and Preservation, 2022, 46, e16167.	2.0	5
20	Effects of tocopherols on the stability of flaxseed oil-in-water emulsions stabilized by different emulsifiers: Interfacial partitioning and interaction. Food Chemistry, 2022, 374, 131691.	8.2	14
21	Injectable thermosensitive lipo-hydrogels loaded with ropivacaine for prolonging local anesthesia. International Journal of Pharmaceutics, 2022, 611, 121291.	5.2	10
22	Quantitative proteomic analyses during formation of chicken egg yolk. Food Chemistry, 2022, 374, 131828.	8.2	23
23	Optimized endogenous lipid concomitants in flaxseed oil by different oil extraction technologies: Their positive roles in emulsions. LWT - Food Science and Technology, 2022, 155, 113000.	5.2	7
24	Effect of microwave exposure to flaxseed on the composition, structure and techno-functionality of gum polysaccharides. Food Hydrocolloids, 2022, 125, 107447.	10.7	14
25	Natural oil bodies from typical oilseeds: Structural characterization and their potentials as natural delivery system for curcumin. Food Hydrocolloids, 2022, 128, 107521.	10.7	29
26	Quantitative N-glycoproteome analysis of bovine milk and yogurt. Current Research in Food Science, 2022, 5, 182-190.	5.8	7
27	Quantitative transcriptomic and metabolomic analyses reveal the changes in Tricholoma matsutake fruiting bodies during cold storage. Food Chemistry, 2022, 381, 132292.	8.2	16
28	Compound hydrogels derived from gelatin and gellan gum regulates the release of anthocyanins in simulated digestion. Food Hydrocolloids, 2022, 127, 107487.	10.7	35
29	Immunomodulatory activity of <i>Senegalia macrostachya </i> (Reichenb. ex DC.) Kyal. & DC.) Kyal	4.6	7
30	Review on the Regulation of Plant Polyphenols on the Stability of Polyunsaturated-Fatty-Acid-Enriched Emulsions: Partitioning Kinetic and Interfacial Engineering. Journal of Agricultural and Food Chemistry, 2022, 70, 3569-3584.	5.2	9
31	Exploration of suitable <i>in vitro</i> simulated digestion model for lipid oxidation of flaxseed oil emulsion during digestion. Journal of the Science of Food and Agriculture, 2022, 102, 5495-5501.	3.5	3
32	L-Theanine: A Unique Functional Amino Acid in Tea (Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Frontiers in Nutrition, 2022, 9, 853846.	3.7	19
33	Delivery of hyperoside by using a soybean protein isolated-soy soluble polysaccharide nanocomplex: Fabrication, characterization, and in vitro release properties. Food Chemistry, 2022, 386, 132837.	8.2	40
34	A structural explanation for enhanced binding behaviors between \hat{I}^2 -lactoglobulin and alkene-aldehydes upon heat- and ultrasonication-induced protein unfolding. Food Hydrocolloids, 2022, 130, 107682.	10.7	25
35	Evaluation of the effect of prebiotic sesame candies on loperamide-induced constipation in mice. Food and Function, 2022, 13, 5690-5700.	4.6	4
36	Konjac oligosaccharides attenuate DSS-induced ulcerative colitis in mice: mechanistic insights. Food and Function, 2022, 13, 5626-5639.	4.6	13

#	Article	IF	CITATIONS
37	Identification, characterization and binding sites prediction of calcium transporter-embryo egg-derived egg white peptides. Journal of Food Measurement and Characterization, 2022, 16, 2948-2960.	3.2	2
38	Insights into ultrasonic treatment on the mechanism of proteolysis and taste improvement of defective dry-cured ham. Food Chemistry, 2022, 388, 133059.	8.2	17
39	Quantitative proteomics provides a new perspective on the mechanism of network structure depolymerization during egg white thinning. Food Chemistry, 2022, 392, 133320.	8.2	16
40	Effect of ball millingâ€assisted glycosylation modification on the structure and foaming property of egg white protein. Journal of Food Science, 2022, 87, 3117-3128.	3.1	11
41	Ultrasound-assisted pH-shifting remodels egg-yolk low-density lipoprotein to enable construction of a stable aqueous solution of vitamin D3. Current Research in Food Science, 2022, 5, 964-972.	5.8	14
42	Binding mechanism and antioxidant activity of piperine to hemoglobin. Food Chemistry, 2022, 394, 133558.	8.2	24
43	A review on the utilization of flaxseed protein as interfacial stabilizers for food applications. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 723-737.	1.9	7
44	Encapsulation of Lactobacillus Salivarius in Single and Dual biopolymer. Journal of Food Engineering, 2021, 294, 110398.	5.2	14
45	Quantitative N-glycoproteomic analyses provide insights into the effects of thermal processes on egg white functional properties. Food Chemistry, 2021, 342, 128252.	8.2	57
46	Influence of an O/W emulsion on the gelatinization, retrogradation and digestibility of rice starch with varying amylose contents. Food Hydrocolloids, 2021, 113, 106547.	10.7	16
47	Relationship between gel properties and water holding of ovalbumin-carboxymethylcellulose electrostatic complex hydrogels. International Journal of Biological Macromolecules, 2021, 167, 1230-1240.	7.5	13
48	Microwave pretreatment enhanced the properties of ovalbumin-inulin-oil emulsion gels and improved the storage stability of pomegranate seed oil. Food Hydrocolloids, 2021, 113, 106548.	10.7	51
49	Tandem mass tag-labeled quantitative proteomic analysis of tenderloins between Tibetan and Yorkshire pigs. Meat Science, 2021, 172, 108343.	5.5	40
50	Quantitative proteomic and metabolomic analysis of Dictyophora indusiata fruiting bodies during post-harvest morphological development. Food Chemistry, 2021, 339, 127884.	8.2	38
51	Lysosome-mediated mitochondrial apoptosis induced by tea polysaccharides promotes colon cancer cell death. Food and Function, 2021, 12, 10524-10537.	4.6	13
52	Microbiota-related effects of prebiotic fibres in lipopolysaccharide-induced endotoxemic mice: short chain fatty acid production and gut commensal translocation. Food and Function, 2021, 12, 7343-7357.	4.6	14
53	Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-23.	4.0	21
54	Selective capture and separation of cationic/anionic guest dyes using crosslinked soy polysaccharide-based hydrogel nanostructure. Journal of Molecular Liquids, 2021, 328, 115401.	4.9	6

#	Article	IF	CITATIONS
55	Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f.) Tj ETQq1 1 0.78431	4 rgBT /O ¹	verlock 10 Tf
56	Interaction mechanisms and structure-affinity relationships between hyperoside and soybean β-conglycinin and glycinin. Food Chemistry, 2021, 347, 129052.	8.2	53
57	Nano eggshell calcium enhanced gel properties of <i>Nemipterus virgatus</i> surimi sausage: gel strength, water retention and microstructure. International Journal of Food Science and Technology, 2021, 56, 5738-5752.	2.7	23
58	Phosphoinositide signaling plays a key role in the regulation of cell wall reconstruction during the postharvest morphological development of Dictyophora indusiata. Food Chemistry, 2021, 346, 128890.	8.2	9
59	Exopolysaccharides from <i>Lactobacillus plantarum</i> NCU116 Facilitate Intestinal Homeostasis by Modulating Intestinal Epithelial Regeneration and Microbiota. Journal of Agricultural and Food Chemistry, 2021, 69, 7863-7873.	5.2	51
60	Tetrahydrocurcumin ameliorates Alzheimer's pathological phenotypes by inhibition of microglial cell cycle arrest and apoptosis via Ras/ERK signaling. Biomedicine and Pharmacotherapy, 2021, 139, 111651.	5.6	22
61	Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium) Tj ETQq $1\ 1$	0.78431 <i>4</i>	1 rgBT /Overlo
62	Phosphoproteomic analysis of duck egg yolk provides novel insights into its characteristics and biofunctions. Journal of the Science of Food and Agriculture, 2021, , .	3.5	2
63	Glucomannan from <i>Aloe vera</i> Gel Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration via the Wnt/β-Catenin Pathway. Journal of Agricultural and Food Chemistry, 2021, 69, 10581-10591.	5.2	10
64	Depolymerization of chicken egg yolk granules induced by high-intensity ultrasound. Food Chemistry, 2021, 354, 129580.	8.2	56
65	Ectopic expression of CsMYB30 from Citrus sinensis enhances salt and drought tolerance by regulating wax synthesis in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2021, 166, 777-788.	5.8	19
66	Isolation and structure characterization of a low methyl-esterified pectin from the tuber of Dioscorea opposita Thunb Food Chemistry, 2021, 359, 129899.	8.2	29
67	Kinetic response of conformational variation of duck liver globular protein to ultrasonic stimulation and its impact on the binding behavior of n-alkenals. LWT - Food Science and Technology, 2021, 150, 111890.	5. 2	54
68	Effect of nano eggshell calcium on the structure, physicochemical, and gel properties of threadfin bream (Nemipterus virgatus) actomyosin. LWT - Food Science and Technology, 2021, 150, 112047.	5.2	20
69	Prebiotic characteristics of arabinogalactans during in vitro fermentation through multi-omics analysis. Food and Chemical Toxicology, 2021, 156, 112522.	3.6	21
70	Comparison of muscle lipidomes between cattle-yak, yak, and cattle using UPLC–MS/MS. Journal of Food Composition and Analysis, 2021, 103, 104113.	3.9	16
71	Screening and process optimization of ultrasound-assisted extraction of main antioxidants from sweet tea (Lithocarpus litseifolius [Hance] Chun). Food Bioscience, 2021, 43, 101277.	4.4	30
72	Binding mechanism and functional evaluation of quercetin 3-rhamnoside on lipase. Food Chemistry, 2021, 359, 129960.	8.2	39

#	Article	IF	CITATIONS
73	Complexation of caffeine and theophylline with epigallocatechin gallate in aqueous solution: Nuclear magnetic resonance, molecular docking and thermodynamics studies. Food Research International, 2021, 148, 110587.	6.2	4
74	Review of structure and bioactivity of the Plantago (Plantaginaceae) polysaccharides. Food Chemistry: X, 2021, 12, 100158.	4.3	11
75	Bacteriostatic effects of high-intensity ultrasonic treatment on Bacillus subtilis vegetative cells. Ultrasonics Sonochemistry, 2021, 81, 105862.	8.2	10
76	Effects of high-intensity ultrasonic (HIU) treatment on the functional properties and assemblage structure of egg yolk. Ultrasonics Sonochemistry, 2020, 60, 104767.	8.2	90
77	How black tea pigment theaflavin dyes chicken eggs: Binding affinity study of theaflavin with ovalbumin. Food Chemistry, 2020, 303, 125407.	8.2	53
78	High-density lipoproteins from egg yolk's effect on hyperlipidemia in a high-fat-diet obese mouse using lipidomic analysis. Food Bioscience, 2020, 33, 100492.	4.4	9
79	De novo transcriptome and proteome analysis of Dictyophora indusiata fruiting bodies provides insights into the changes during morphological development. International Journal of Biological Macromolecules, 2020, 146, 875-886.	7.5	19
80	Interactions of the cis and trans states of an azobenzene photoswitch with lysozyme induced by red and blue light. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117965.	3.9	16
81	Molecular aggregation and property changes of egg yolk low-density lipoprotein induced by ethanol and high-density ultrasound. Ultrasonics Sonochemistry, 2020, 63, 104933.	8.2	32
82	Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients, 2020, 12, 2907.	4.1	139
83	A puzzle piece of protein N-glycosylation in chicken egg: N-glycoproteome of chicken egg vitelline membrane. International Journal of Biological Macromolecules, 2020, 164, 3125-3132.	7.5	12
84	Characterization of the interaction between hen egg white lysozyme and ovalbumin. Food Bioscience, 2020, 36, 100674.	4.4	22
85	Green Extraction of Antioxidant Polyphenols from Green Tea (Camellia sinensis). Antioxidants, 2020, 9, 785.	5.1	73
86	Integrated proteomic, phosphoproteomic and N-glycoproteomic analyses of chicken eggshell matrix. Food Chemistry, 2020, 330, 127167.	8.2	31
87	N-glycoproteomic analysis of duck egg yolk proteins: Implications for biofunctions and evolution. International Journal of Biological Macromolecules, 2020, 151, 19-26.	7. 5	9
88	Quantitative phosphoproteomic analysis of fertilized egg derived from Tibetan and lowland chickens. International Journal of Biological Macromolecules, 2020, 149, 522-531.	7.5	11
89	Underlying mechanism for the differences in heat-induced gel properties between thick egg whites and thin egg whites: Gel properties, structure and quantitative proteome analysis. Food Hydrocolloids, 2020, 106, 105873.	10.7	85
90	Hydroxyl radical-induced early stage oxidation improves the foaming and emulsifying properties of ovalbumin. Poultry Science, 2019, 98, 1047-1054.	3.4	30

#	Article	IF	CITATIONS
91	Identification of the Duck Egg White N-Glycoproteome and Insight into the Course of Biological Evolution. Journal of Agricultural and Food Chemistry, 2019, 67, 9950-9957.	5.2	17
92	In-depth mapping of the seed phosphoproteome and N-glycoproteome of Tartary buckwheat (Fagopyrum) Tj ETQo Biological Macromolecules, 2019, 137, 688-696.	q0 0 0 rgB 7.5	T /Overlock 10
93	Comparative proteomic analysis of hen egg yolk plasma proteins during embryonic development. Journal of Food Biochemistry, 2019, 43, e13045.	2.9	13
94	Inâ€depth mapping of the proteome of Tibetan pig tenderloin (<i>longissimus dorsi</i>) using offline highâ€pH reversedâ€phase fractionation and LCâ€MS/MS. Journal of Food Biochemistry, 2019, 43, e13015.	2.9	16
95	Comparative analysis of the interaction of mono-, dis-, and tris-azo food dyes with egg white lysozyme: A combined spectroscopic and computational simulation approach. Food Chemistry, 2019, 284, 180-187.	8.2	30
96	Dynamic analysis of polar metabolites and volatile compounds in sesame seeds during roasting. Cereal Chemistry, 2019, 96, 358-369.	2.2	19
97	Analysis of tartary buckwheat (<i>Fagopyrum tataricum</i>) seed proteome using offline twoâ€dimensional liquid chromatography and tandem mass spectrometry. Journal of Food Biochemistry, 2019, 43, e12863.	2.9	32
98	Large-scale purification of ovalbumin using polyethylene glycol precipitation and isoelectric precipitation. Poultry Science, 2019, 98, 1545-1550.	3.4	41
99	Metabolic and proteomic analysis of morel fruiting body (Morchella importuna). Journal of Food Composition and Analysis, 2019, 76, 51-57.	3.9	49
100	Effect of hydroxyl radical-induced oxidation on the structure and heat-induced gel properties of ovalbumin. Journal of Food Processing and Preservation, 2018, 42, e13626.	2.0	39
101	<i>N</i> -Glycoproteomic Analysis of Chicken Egg Yolk. Journal of Agricultural and Food Chemistry, 2018, 66, 11510-11516.	5.2	60
102	Identification of <i>N</i> -Glycosites in Chicken Egg White Proteins Using an Omics Strategy. Journal of Agricultural and Food Chemistry, 2017, 65, 5357-5364.	5.2	76
103	Hen egg yolk phosvitin stimulates osteoblast differentiation in the absence of ascorbic acid. Journal of the Science of Food and Agriculture, 2017, 97, 4532-4538.	3.5	17
104	Genome-Wide Identification and Comparative Analysis of Albumin Family in Vertebrates. Evolutionary Bioinformatics, 2017, 13, 117693431771608.	1.2	27
105	Hen egg white ovomacroglobulin promotes fibroblast migration via mediating cell adhesion and cytoskeleton. Journal of the Science of Food and Agriculture, 2016, 96, 3188-3194.	3.5	17
106	Proteome analysis of the almond kernel (<i>Prunus dulcis</i>). Journal of the Science of Food and Agriculture, 2016, 96, 3351-3357.	3.5	23
107	Calcium binding characteristics and structural changes of phosvitin. Journal of Inorganic Biochemistry, 2016, 159, 76-81.	3.5	24
108	Effect of Garlic Oil on Lipid Oxidation, Fatty Acid Profiles and Microstructure of Salted Duck Eggs. Journal of Food Processing and Preservation, 2015, 39, 2897-2911.	2.0	20

Fang Geng

#	Article	IF	CITATION
109	A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poultry Science, 2015, 94, 104-110.	3.4	24
110	Mass Spectrometry and Two-Dimensional Electrophoresis To Characterize the Glycosylation of Hen Egg White Ovomacroglobulin. Journal of Agricultural and Food Chemistry, 2015, 63, 8209-8215.	5.2	22
111	Acceleration of the initial phase transformation of mineralization by phosvitin. Journal of Crystal Growth, 2015, 409, 44-50.	1.5	22
112	Phosvitin phosphorus is involved in chicken embryo bone formation through dephosphorylation. Poultry Science, 2014, 93, 3065-3072.	3.4	30
113	Purification of hen egg white ovomacroglobulin using oneâ€step chromatography. Journal of Separation Science, 2013, 36, 3717-3722.	2.5	8
114	Estimation of egg freshness using S-ovalbumin as an indicator. Poultry Science, 2012, 91, 739-743.	3.4	53
115	Co-purification of chicken egg white proteins using polyethylene glycol precipitation and anion-exchange chromatography. Separation and Purification Technology, 2012, 96, 75-80.	7.9	41
116	Simply and effectively preparing highâ€purity phosvitin using polyethylene glycol and anionâ€exchange chromatography. Journal of Separation Science, 2011, 34, 3295-3301.	2.5	31