Alan Rein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6354608/publications.pdf

Version: 2024-02-01

65 4,791 38 64
papers citations h-index g-index

70 70 70 2988
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Stephen Oroszlan and Retroviral Proteins. Viruses, 2022, 14, 290.	3.3	O
2	Across the Hall from Pioneers. Viruses, 2021, 13, 491.	3.3	4
3	Show your cap or be packaged into HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2115344118.	7.1	2
4	Structural Mimicry Drives HIV-1 Rev-Mediated HERV-K Expression. Journal of Molecular Biology, 2020, 432, 166711.	4.2	12
5	The heart of the HIV RNA packaging signal?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19621-19623.	7.1	4
6	HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal. Journal of Biological Chemistry, 2020, 295, 14391-14401.	3.4	20
7	IFITM3 Reduces Retroviral Envelope Abundance and Function and Is Counteracted by glycoGag. MBio, 2020, 11, .	4.1	25
8	Distinct Contributions of Different Domains within the HIV-1 Gag Polyprotein to Specific and Nonspecific Interactions with RNA. Viruses, 2020, 12, 394.	3.3	12
9	Nucleic acid–induced dimerization of HIV-1 Gag protein. Journal of Biological Chemistry, 2019, 294, 16480-16493.	3.4	15
10	RNA Packaging in HIV. Trends in Microbiology, 2019, 27, 715-723.	7.7	65
11	Structure and architecture of immature and mature murine leukemia virus capsids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11751-E11760.	7.1	92
12	Efficient support of virus-like particle assembly by the HIV-1 packaging signal. ELife, 2018, 7, .	(0	30
		6.0	
13	Interactions between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly. Journal of Virology, 2017, 91, .	3.4	28
13 14			28
	2017, 91, . Contributions of Individual Domains to Function of the HIV-1 Rev Response Element. Journal of	3.4	
14	2017, 91, . Contributions of Individual Domains to Function of the HIV-1 Rev Response Element. Journal of Virology, 2017, 91, .	3.4	9
14 15	Contributions of Individual Domains to Function of the HIV-1 Rev Response Element. Journal of Virology, 2017, 91, . Dissection of specific binding of HIV-1 Gag to the 'packaging signal' in viral RNA. ELife, 2017, 6, .	3.4 3.4 6.0	9 53

#	Article	IF	CITATIONS
19	Dimerization of the SP1 Region of HIV-1 Gag Induces a Helical Conformation and Association into Helical Bundles: Implications for Particle Assembly. Journal of Virology, 2016, 90, 1773-1787.	3.4	34
20	Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation. Journal of Virology, 2016, 90, 4544-4555.	3.4	55
21	Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein. Journal of Virology, 2015, 89, 10371-10382.	3.4	17
22	Biochemical and Biological Studies of Mouse APOBEC3. Journal of Virology, 2014, 88, 3850-3860.	3.4	27
23	A Conformational Transition Observed in Single HIV-1 Gag Molecules during <i>In Vitro</i> Assembly of Virus-Like Particles. Journal of Virology, 2014, 88, 3577-3585.	3.4	46
24	Antiretroviral restriction factors in mice. Virus Research, 2014, 193, 130-134.	2.2	8
25	An Unusual Topological Structure of the HIV-1 Rev Response Element. Cell, 2013, 155, 594-605.	28.9	109
26	Elements in HIV-1 Gag contributing to virus particle assembly. Virus Research, 2013, 171, 341-345.	2.2	32
27	Murine leukemia virus p12 functions include hitchhiking into the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9195-9196.	7.1	3
28	Functional Redundancy in HIV-1 Viral Particle Assembly. Journal of Virology, 2012, 86, 12991-12996.	3.4	24
29	Studies on the Restriction of Murine Leukemia Viruses by Mouse APOBEC3. PLoS ONE, 2012, 7, e38190.	2.5	22
30	HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid. Journal of Molecular Biology, 2011, 406, 205-214.	4.2	103
31	Structure and Stoichiometry of Template-Directed Recombinant HIV-1 Gag Particles. Journal of Molecular Biology, 2011, 410, 667-680.	4.2	19
32	Solution Properties of Murine Leukemia Virus Gag Protein: Differences from HIV-1 Gag. Journal of Virology, 2011, 85, 12733-12741.	3.4	28
33	Diverse interactions of retroviral Gag proteins with RNAs. Trends in Biochemical Sciences, 2011, 36, 373-80.	7.5	79
34	Murine Leukemia Viruses: Objects and Organisms. Advances in Virology, 2011, 2011, 1-14.	1.1	40
35	Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding. Journal of Virology, 2011, 85, 1594-1603.	3.4	80
36	On the Role of the SP1 Domain in HIV-1 Particle Assembly: a Molecular Switch?. Journal of Virology, 2011, 85, 4111-4121.	3.4	111

#	Article	IF	CITATIONS
37	Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: Biological implications. Virology, 2010, 405, 556-567.	2.4	41
38	Definition of a high-affinity Gag recognition structure mediating packaging of a retroviral RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19248-19253.	7.1	64
39	Nucleic acid chaperone activity of retroviral Gag proteins. RNA Biology, 2010, 7, 700-705.	3.1	52
40	Assembly Properties of Human Immunodeficiency Virus Type 1 Gag-Leucine Zipper Chimeras: Implications for Retrovirus Assembly. Journal of Virology, 2009, 83, 2216-2225.	3.4	82
41	Preparation of Recombinant HIV-1 Gag Protein and Assembly of Virus-Like Particles In Vitro. Methods in Molecular Biology, 2009, 485, 197-208.	0.9	34
42	Interactions of Murine APOBEC3 and Human APOBEC3G with Murine Leukemia Viruses. Journal of Virology, 2008, 82, 6566-6575.	3.4	65
43	High-Throughput SHAPE Analysis Reveals Structures in HIV-1 Genomic RNA Strongly Conserved across Distinct Biological States. PLoS Biology, 2008, 6, e96.	5.6	351
44	Selective and Nonselective Packaging of Cellular RNAs in Retrovirus Particles. Journal of Virology, 2007, 81, 6623-6631.	3.4	155
45	Interactions between HIV-1 Gag Molecules in Solution: An Inositol Phosphate-mediated Switch. Journal of Molecular Biology, 2007, 365, 799-811.	4.2	123
46	Conformation of the HIV-1 Gag Protein in Solution. Journal of Molecular Biology, 2007, 365, 812-824.	4.2	126
47	Interactions of HIV-1 Gag with Assembly Cofactorsâ€. Biochemistry, 2006, 45, 4077-4083.	2.5	131
48	Complex interactions of HIV-1 nucleocapsid protein with oligonucleotides. Nucleic Acids Research, 2006, 34, 472-484.	14.5	244
49	Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins. Nucleic Acids Research, 2006, 34, 593-605.	14.5	125
50	mRNA Molecules Containing Murine Leukemia Virus Packaging Signals Are Encapsidated as Dimers. Journal of Virology, 2004, 78, 10927-10938.	3 . 4	54
51	Role of Murine Leukemia Virus Nucleocapsid Protein in Virus Assembly. Journal of Virology, 2004, 78, 12378-12385.	3.4	52
52	Take two. Nature Structural and Molecular Biology, 2004, 11, 1034-1035.	8.2	9
53	Murine Leukemia Virus Nucleocapsid Mutant Particles Lacking Viral RNA Encapsidate Ribosomes. Journal of Virology, 2002, 76, 11405-11413.	3.4	42
54	Infectivity of Moloney Murine Leukemia Virus Defective in Late Assembly Events Is Restored by Late Assembly Domains of Other Retroviruses. Journal of Virology, 2000, 74, 7250-7260.	3.4	149

#	ARTICLE	IF	CITATION
55	In Vitro Assembly Properties of Human Immunodeficiency Virus Type 1 Gag Protein Lacking the p6 Domain. Journal of Virology, 1999, 73, 2270-2279.	3.4	265
56	The Human Immunodeficiency Virus Type 1 Gag Polyprotein Has Nucleic Acid Chaperone Activity: Possible Role in Dimerization of Genomic RNA and Placement of tRNA on the Primer Binding Site. Journal of Virology, 1999, 73, 4251-4256.	3.4	138
57	Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends in Biochemical Sciences, 1998, 23, 297-301.	7.5	370
58	Sequence-Specific Binding of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein to Short Oligonucleotides. Journal of Virology, 1998, 72, 1902-1909.	3.4	169
59	Evidence for Cooperation between Murine Leukemia Virus Env Molecules in Mixed Oligomers. Journal of Virology, 1998, 72, 3432-3435.	3.4	35
60	Different recombinant murine leukemia viruses use different cell surface receptors. Virology, 1984, 136, 144-152.	2.4	135
61	Interference grouping of murine leukemia viruses: A distinct receptor for the MCF-Recombinant viruses in mouse cells. Virology, 1982, 120, 251-257.	2.4	207
62	Balb/3T3 cells chronically infected with N-tropic murine leukemia virus continue to express Fv-1b restriction. Virology, 1981, 112, 795-799.	2.4	11
63	Loss of Fv-1 restriction in Balb/3T3 cells following infection with a single N tropic murine leukemia virus particle. Cell, 1977, 10, 479-488.	28.9	78
64	Phenotypic mixing between N- and B-tropic murine leukemia viruses: Infectious particles with dual sensitivity to Fv-1 restriction. Cell, 1976, 7, 373-379.	28.9	96
65	Murine sarcoma virus pseudotypes acquire a determinant specifying N or B tropism from leukaemia virus during rescue. Nature, 1975, 256, 223-225.	27.8	50