Stefan Oscarson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6354577/publications.pdf Version: 2024-02-01

STEEAN OSCADSON

#	Article	IF	CITATIONS
1	Multivalent glycoconjugates as anti-pathogenic agents. Chemical Society Reviews, 2013, 42, 4709-4727.	38.1	464
2	Receptor binding studies disclose a novel class of highâ€affinity inhibitors of the <i>Escherichia coli</i> FimH adhesin. Molecular Microbiology, 2005, 55, 441-455.	2.5	372
3	Functional Adaptation of BabA, the <i>H. pylori</i> ABO Blood Group Antigen Binding Adhesin. Science, 2004, 305, 519-522.	12.6	368
4	Intervening with Urinary Tract Infections Using Anti-Adhesives Based on the Crystal Structure of the FimH–Oligomannose-3 Complex. PLoS ONE, 2008, 3, e2040.	2.5	202
5	Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Science Translational Medicine, 2015, 7, 276ra27.	12.4	199
6	Binding of Multivalent Carbohydrates to Concanavalin A andDioclea grandiflora Lectin. Journal of Biological Chemistry, 2000, 275, 14223-14230.	3.4	196
7	Monobenzylation of diols using phase-tramfer catalysis. Carbohydrate Research, 1976, 50, C12-C14.	2.3	186
8	Reductive Ring Openings of Carbohydrate Benzylidene Acetals Using Borane-Trimethylamine and Aluminium Chloride. Regioselectivity and Solvent Dependance. Journal of Carbohydrate Chemistry, 1983, 2, 305-311.	1.1	183
9	The Fucose-binding Lectin from Ralstonia solanacearum. Journal of Biological Chemistry, 2005, 280, 27839-27849.	3.4	160
10	Gold nanoparticles as carriers for a synthetic <i>Streptococcus pneumoniae</i> type 14 conjugate vaccine. Nanomedicine, 2012, 7, 651-662.	3.3	158
11	The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Molecular Microbiology, 2006, 61, 1556-1568.	2.5	139
12	Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes and Infection, 2003, 5, 1057-1063.	1.9	127
13	Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3. Clycobiology, 2004, 14, 817-825.	2.5	110
14	Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3, and -7: Evidence for differential binding specificities. Canadian Journal of Chemistry, 2002, 80, 1096-1104.	1.1	107
15	Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence. Cell Host and Microbe, 2017, 21, 376-389.	11.0	104
16	Common side reactions of the glycosyl donor in chemical glycosylation. Carbohydrate Research, 2015, 408, 51-95.	2.3	101
17	Identification of the Smallest Structure Capable of Evoking Opsonophagocytic Antibodies against <i>Streptococcus pneumoniae</i> Type 14. Infection and Immunity, 2008, 76, 4615-4623.	2.2	95
18	The fimbrial adhesin F17â€C of enterotoxigenic <i>Escherichia coli</i> has an immunoglobulinâ€like lectin domain that binds <i>N</i> â€acetylglucosamine. Molecular Microbiology, 2003, 49, 705-715.	2.5	89

#	Article	IF	CITATIONS
19	Engineering a Therapeutic Lectin by Uncoupling Mitogenicity from Antiviral Activity. Cell, 2015, 163, 746-758.	28.9	89
20	Structural Insights into Polymorphic ABO Glycan Binding by Helicobacter pylori. Cell Host and Microbe, 2016, 19, 55-66.	11.0	88
21	A single sulfatase is required to access colonic mucin by a gut bacterium. Nature, 2021, 598, 332-337.	27.8	87
22	Synthesis of Methyl (Ethyl 2-O-acyl-3,4-di-O-benzyl-1-thiobetaD-glucopyranosid)uronates and Evaluation of Their Use as Reactive .betaSelective Glucuronic Acid Donors. Journal of Organic Chemistry, 1995, 60, 2200-2204.	3.2	85
23	Ethyl 2-acetamido-4,6-di-O-benzyl-2,3-N,O-carbonyl-2-deoxy-1-thio-β-d-glycopyranoside as a versatile GlcNAc donor. Chemical Communications, 2005, , 3044.	4.1	81
24	β-Propeller Crystal Structure of Psathyrella velutina Lectin: An Integrin-like Fungal Protein Interacting with Monosaccharides and Calcium. Journal of Molecular Biology, 2006, 357, 1575-1591.	4.2	77
25	Mutational Analysis Provides Molecular Insight into the Carbohydrate-Binding Region of Calreticulin:Â Pivotal Roles of Tyrosine-109 and Aspartate-135 in Carbohydrate Recognitionâ€. Biochemistry, 2004, 43, 97-106.	2.5	75
26	Studies of the Binding Specificity of Concanavalin A. Nature of the Extended Binding Site for Asparagine-Linked Carbohydrates. Biochemistry, 1994, 33, 1157-1162.	2.5	73
27	Interactions of Substrate with Calreticulin, an Endoplasmic Reticulum Chaperone. Journal of Biological Chemistry, 2003, 278, 6194-6200.	3.4	73
28	Investigations of Glycosylation Reactions with 2-N-Acetyl-2N,3O-oxazolidinone-Protected Glucosamine Donors. Journal of Organic Chemistry, 2008, 73, 7181-7188.	3.2	72
29	Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2509-E2518.	7.1	71
30	SmI2/Water/Amine Mediates Cleavage of Allyl Ether Protected Alcohols:  Application in Carbohydrate Synthesis and Mechanistic Considerations. Organic Letters, 2003, 5, 4085-4088.	4.6	70
31	The Tyrosine Gate as a Potential Entropic Lever in the Receptor-Binding Site of the Bacterial Adhesin FimH. Biochemistry, 2012, 51, 4790-4799.	2.5	67
32	Diocleinae Lectins Are a Group of Proteins with Conserved Binding Sites for the Core Trimannoside of Asparagine-linked Oligosaccharides and Differential Specificities for Complex Carbohydrates. Journal of Biological Chemistry, 1998, 273, 12082-12088.	3.4	66
33	Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiology, 2016, 26, 888-903.	2.5	66
34	Thermodynamics of Lectin-Carbohydrate Interactions. Journal of Biological Chemistry, 1997, 272, 6388-6392.	3.4	65
35	Thermodynamic, Kinetic, and Electron Microscopy Studies of Concanavalin A and Dioclea grandiflora Lectin Cross-linked with Synthetic Divalent Carbohydrates. Journal of Biological Chemistry, 2005, 280, 8640-8646.	3.4	62
36	A Novel β-Directing Fructofuranosyl Donor Concept. Stereospecific Synthesis of Sucrose. Journal of the American Chemical Society, 2000, 122, 8869-8872.	13.7	60

#	Article	IF	CITATIONS
37	Synthesis and immunological studies of glycoconjugates of Cryptococcus neoformans capsular glucuronoxylomannan oligosaccharide structures. Vaccine, 2005, 23, 3961-3972.	3.8	59
38	Design–functionality relationships for adhesion/growth-regulatory galectins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2837-2842.	7.1	57
39	A Hexasaccharide Containing Rare 2â€ <i>O</i> â€Sulfateâ€Glucuronic Acid Residues Selectively Activates Heparin Cofactor II. Angewandte Chemie - International Edition, 2017, 56, 2312-2317.	13.8	54
40	Stereospecific Synthesis of β-d-Fructofuranosides Using Thioglycoside Donors and Internal Aglycon Deliveryâ€. Journal of Organic Chemistry, 1998, 63, 1780-1784.	3.2	51
41	One-Pot Oligosaccharide Synthesis Exploiting Solvent Reactivity Effects. Organic Letters, 2000, 2, 3881-3882.	4.6	51
42	Interaction of five d-mannose-specific lectins with a series of synthetic branched trisaccharides. Carbohydrate Research, 1991, 213, 109-116.	2.3	49
43	Synthesis of the Leishmania LPG Core Heptasaccharyl myo-Inositol. Journal of the American Chemical Society, 2000, 122, 11067-11072.	13.7	49
44	Investigation of the reactivity difference between thioglycoside donors with variant aglycon parts. Canadian Journal of Chemistry, 2002, 80, 889-893.	1.1	49
45	A Comparison of the Fine Saccharide-Binding Specificity of Dioclea grandiflora Lectin and Concanavalin A. FEBS Journal, 1996, 242, 320-326.	0.2	47
46	Synthesis of a Branched Heptose- and Kdo-Containing Common Tetrasaccharide Core Structure of Haemophilus influenzae Lipopolysaccharides via a 1,6-Anhydro-l-glycero-β-d-manno-heptopyranose Intermediate. Journal of Organic Chemistry, 1998, 63, 7780-7788.	3.2	47
47	Synthesis of the Lewis b hexasaccharide and squarate acid–HSA conjugates thereof with various saccharide loadings. Carbohydrate Research, 2000, 329, 309-316.	2.3	47
48	Syntheses of Anomerically Phosphodiester-Linked Oligomers of the Repeating Units of the Haemophilus influenzae Types c and f Capsular Polysaccharides. Journal of Organic Chemistry, 2001, 66, 6234-6243.	3.2	45
49	Synthesis and Self-Assembly of Globotriose Derivatives:Â A Model System for Studies of Carbohydrateâ ^{~^} Protein Interactions. Langmuir, 2002, 18, 2848-2858.	3.5	45
50	Stereospecific Synthesis of β-d-Fructofuranosides Using the Internal Aglycon Delivery Approach. Journal of Organic Chemistry, 1996, 61, 4512-4513.	3.2	44
51	Atomic Mapping of the Interactions between the Antiviral Agent Cyanovirin-N and Oligomannosides by Saturation-Transfer Difference NMRâ€. Biochemistry, 2004, 43, 13926-13931.	2.5	44
52	FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathogens, 2016, 12, e1005555.	4.7	44
53	Stannylene Activation in Glycoside Synthesis: Regioselective Glycosidations at the Primary Position of Galactopyranosides Unprotected in the 2-, 3-, 4-, and 6-Positions. Synthesis, 1995, 1995, 409-414.	2.3	42
54	Fluorinated Carbohydrates as Lectin Ligands: Synthesis of OH/Fâ€&ubstituted <i>N</i> lycan Core Trimannoside and Epitope Mapping by 2D STDâ€TOCSYreFâ€NMR spectroscopy. Chemistry - A European Journal, 2018, 24, 15761-15765.	3.3	41

#	Article	IF	CITATIONS
55	Synthesis ofd-Fructofuranosides Using Thioglycosides as Glycosyl Donors. Journal of Organic Chemistry, 1996, 61, 1234-1238.	3.2	40
56	RAPID CARBOHYDRATE PROTECTING GROUP MANIPULATIONS ASSISTED BY MICROWAVE DIELECTRIC HEATING. Journal of Carbohydrate Chemistry, 2001, 20, 397-410.	1.1	40
57	Fluorinated Carbohydrates as Lectin Ligands: Dissecting Glycan–Cyanovirin Interactions by Using ¹⁹ Fâ€NMR Spectroscopy. Chemistry - A European Journal, 2013, 19, 5364-5374.	3.3	40
58	Glycosulfatase-Encoding Gene Cluster in Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2016, 82, 6611-6623.	3.1	40
59	Evaluation of thioglycosides of Kdo as glycosyl donors. Carbohydrate Research, 2007, 342, 631-637.	2.3	39
60	The targeted recognition of <scp><i>L</i></scp> <i>actococcus lactis</i> phages to their polysaccharide receptors. Molecular Microbiology, 2015, 96, 875-886.	2.5	39
61	Monotosylation of diols using phase-transfer catalysis. Carbohydrate Research, 1977, 53, C5-C7.	2.3	38
62	Syntheses of the octyl and tetradecyl glycosides of 3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranose and of 3,4-di-O-α-d-mannopyranosyl-α-d-mannopyranose. A new way for 2,4-di-O-protection of mannopyranosides. Carbohydrate Research, 1993, 247, 323-328.	2.3	37
63	Irreversible Glucuronyl C5-epimerization in the Biosynthesis of Heparan Sulfate. Journal of Biological Chemistry, 2004, 279, 14631-14638.	3.4	37
64	Role of Water Molecules in Structure and Energetics of Pseudomonas aeruginosa Lectin I Interacting with Disaccharides. Journal of Biological Chemistry, 2010, 285, 20316-20327.	3.4	37
65	Synthesis of structures corresponding to the capsular polysaccharide of Neisseria meningitidis group A. Organic and Biomolecular Chemistry, 2005, 3, 3782.	2.8	36
66	Synthesis of 6- and 6′-deoxy derivatives of methyl 4-O-α-d-galactopyranosyl-β-d-galactopyranoside for studies of inhibition of pyelonephritogenic fimbriated E. coli adhesion to urinary epithelium-cell surfaces. Carbohydrate Research, 1985, 137, 270-275.	2.3	35
67	A synthesis of 8-methoxycarbonyloct-1-yl O-α-d-galactopyranosyl-(1→3)-O-β-d-galactopyranosyl-(1→4)-2-acetamido-2-deoxy-β-d-glucopyranoside. Carbohydrate Research, 1985, 136, 207-213.	2.3	35
68	Synthesis of methyl 3-O-(α-d-glucopyranosyl)-7-O-(l-glycero-α-d-manno-heptopyranosyl)-l-glycero-α-d-manno- heptopyranoside. Carbohydrate Research, 1990, 205, 125-132.	2.3	35
69	Synthesis of an artificial antigen that corresponds to a disaccharide repeating unit of the capsular polysaccharide of Haemophilus influenzae type d. A facile synthesis of methyl 2-acetamido-2-deoxy-β- d -mannopyranoside. Carbohydrate Research, 1992, 216, 187-196.	2.3	35
70	Thermodynamics of Binding of the Core Trimannoside of Asparagine-linked Carbohydrates and Deoxy Analogs to Dioclea grandiflora Lectin. Journal of Biological Chemistry, 1998, 273, 32812-32817.	3.4	35
71	Ligands of the asialoglycoprotein receptor for targeted gene delivery, part 1: Synthesis of and binding studies with biotinylated cluster glycosides containing N-acetylgalactosamine. Glycoconjugate Journal, 2004, 21, 227-241.	2.7	35
72	The common Cryptococcus neoformans glucuronoxylomannan M2 motif elicits non-protective antibodies. Vaccine, 2009, 27, 3513-3518.	3.8	35

#	Article	IF	CITATIONS
73	Intelectin-1 Is a Prominent Protein Constituent of Pathologic Mucus Associated with Eosinophilic Airway Inflammation in Asthma. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1005-1007.	5.6	35
74	A Monoclonal Antibody to Cryptococcus neoformans Glucuronoxylomannan Manifests Hydrolytic Activity for Both Peptides and Polysaccharides. Journal of Biological Chemistry, 2017, 292, 417-434.	3.4	35
75	Glycosyl 1-piperidinecarbodithioates in the synthesis of glycosides. Carbohydrate Research, 1991, 211, 157-162.	2.3	34
76	Unraveling Sugar Binding Modes to DC-SIGN by Employing Fluorinated Carbohydrates. Molecules, 2019, 24, 2337.	3.8	34
77	Synthesis of fluorescence labeled sialyl LewisX glycosphingolipids. Tetrahedron Letters, 2001, 42, 377-380.	1.4	32
78	Synthesis of oligosaccharides corresponding to Streptococcus pneumoniae type 9 capsular polysaccharide structures. Carbohydrate Research, 2002, 337, 1715-1722.	2.3	32
79	Synthesis of Oligosaccharide Structures from the Lipopolysaccharide ofMoraxella catarrhalis. Journal of Organic Chemistry, 1996, 61, 7711-7718.	3.2	31
80	Thermodynamic Binding Studies of Lectins from the Diocleinae Subtribe to Deoxy Analogs of the Core Trimannoside of Asparagine-linked Oligosaccharides. Journal of Biological Chemistry, 2000, 275, 16119-16126.	3.4	31
81	Partially esterified sucrose derivatives: Synthesis of 6-O-acetyl-2,3,4-tri-O-[(S)-3-methylpentanoyl]sucrose, a naturally occurring flavour precursor of tobacco. Carbohydrate Research, 1988, 181, 89-96.	2.3	30
82	Synthesis of part of a proposed insulin second messenger glycosylinositol phosphate and the inner core of glycosylphosphatidylinositol anchors. Tetrahedron, 1997, 53, 17727-17734.	1.9	30
83	New potent C 2 -Symmetric malaria plasmepsin I and II inhibitors. Bioorganic and Medicinal Chemistry, 2003, 11, 1235-1246.	3.0	30
84	Synthesis of oligosaccharides corresponding to Vibrio cholerae O139 polysaccharide structures containing dideoxy sugars and a cyclic phosphate. Organic and Biomolecular Chemistry, 2006, 4, 1236.	2.8	30
85	Chemical Syntheses of Inulin and Levan Structures. Journal of Organic Chemistry, 2002, 67, 8457-8462.	3.2	29
86	Optimized Conditions for the Palladium atalyzed Hydrogenolysis of Benzyl and Naphthylmethyl Ethers: Preventing Saturation of Aromatic Protecting Groups. European Journal of Organic Chemistry, 2020, 2020, 3332-3337.	2.4	29
87	Design and Synthesis of Potent and Selective BACE-1 Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 1458-1464.	6.4	28
88	A synthetic strategy to xylose-containing thioglycoside tri- and tetrasaccharide building blocks corresponding to Cryptococcus neoformans capsular polysaccharide structures. Organic and Biomolecular Chemistry, 2015, 13, 6598-6610.	2.8	28
89	The use of hydrophobic amino acids in protecting spray dried trehalose formulations against moisture-induced changes. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 139-153.	4.3	28
90	Synthesis of 2-(4-aminophenyl)ethyl 3-deoxy-5-O-(3,4,6-tri-O-l ² -d-glucopyranosyl-l ² ±-d-glucopyranosyl)-l ² ±-d-manno-oct-2-ulopyranosidonic acid, a highly branched pentasaccharide corresponding to structures found in lipopolysaccharides from Moraxella catarrhalis. Carbohydrate Research, 1995, 278, 289-300.	2.3	27

#	Article	IF	CITATIONS
91	A synthetic glycan array containing <i>Cryptococcus neoformans</i> glucuronoxylomannan capsular polysaccharide fragments allows the mapping of protective epitopes. Chemical Science, 2020, 11, 9209-9217.	7.4	26
92	Synthesis and conformational and NMR studies of $\hat{I}\pm$ -d-mannopyranosyl and $\hat{I}\pm$ -d-mannopyranosyl-(1 →) Tj ETÇ)q0 0 0 g rgB	T /Qyerlock 1
93	Defining the Qualities of High-Quality Palladium on Carbon Catalysts for Hydrogenolysis. Organic Process Research and Development, 2021, 25, 1573-1578.	2.7	25
94	Differential Solvation of "Core―Trimannoside Complexes of the Dioclea grandiflora Lectin and Concanavalin A Detected by Primary Solvent Isotope Effects in Isothermal Titration Microcalorimetry. Journal of Biological Chemistry, 1998, 273, 32826-32832.	3.4	24
95	Block Synthesis of Streptococcus pneumoniae Type 14 Capsular Polysaccharide Structures*. Journal of Carbohydrate Chemistry, 2005, 24, 379-391.	1.1	24
96	Synthesis of stable C-phosphonate analogues of Neisseria meningitidis group A capsular polysaccharide structures using modified Mitsunobu reaction conditions. Organic and Biomolecular Chemistry, 2006, 4, 4485-4490.	2.8	24
97	Isothermal titration calorimetric study defines the substrate binding residues of calreticulin. Biochemical and Biophysical Research Communications, 2006, 351, 14-20.	2.1	24
98	Glycocluster Design for Improved Avidity and Selectivity in Blocking Human Lectin/Plant Toxin Binding to Glycoproteins and Cells. Molecular Pharmaceutics, 2010, 7, 2270-2279.	4.6	24
99	Exploiting Uniformly ¹³ C-Labeled Carbohydrates for Probing Carbohydrate–Protein Interactions by NMR Spectroscopy. Journal of the American Chemical Society, 2017, 139, 6210-6216.	13.7	24
100	Fluorinated Carbohydrates as Lectin Ligands: Simultaneous Screening of a Monosaccharide Library and Chemical Mapping by ¹⁹ F NMR Spectroscopy. Journal of Organic Chemistry, 2020, 85, 16072-16081.	3.2	24
101	Syntheses of deoxy analogues of methyl 3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranoside for studies of the binding site of Concanavalin A. Carbohydrate Research, 1995, 278, 271-287.	2.3	23
102	Efficient synthesis of differently protected methyl (ethyl 1-thio-β-d-glucopyranosid)uronates and their evaluation as glucuronic acid donors and acceptors. Carbohydrate Research, 1998, 308, 287-296.	2.3	23
103	Structural Sampling of Glycan Interaction Profiles Reveals Mucosal Receptors for Fimbrial Adhesins of Enterotoxigenic Escherichia coli. Biology, 2013, 2, 894-917.	2.8	23
104	Sites for Dynamic Protein-Carbohydrate Interactions of O- and C-Linked Mannosides on the E. coli FimH Adhesin. Molecules, 2017, 22, 1101.	3.8	23
105	A regioselective reductive ring opening of 4,6-O-prop-2-enylidene acetals of hexopyranosides. Journal of the Chemical Society Perkin Transactions 1, 1982, , 2395.	0.9	22
106	Synthesis of colitose-containing oligosaccharide structures found in polysaccharides from Vibrio cholerae O139 synonym Bengal using thioglycoside donors. Carbohydrate Research, 1997, 299, 159-164.	2.3	22
107	Synthesis of 2-(4-trifluoroacetamidophenyl)ethyl O-(spL-glycero-α-spD-manno-heptopyranosyl)-(1â†'7)-O-(spL-glycero-α-spD-) Tj ETQq1 1 0.784314 rgBT /Overl	ock 10 Tf 5	50 102 Td (ma 21
	Solving the phase problem for carbohydrate-binding proteins using selenium derivatives of their		

7

2.5 21

#	Article	IF	CITATIONS
109	A facile approach to diosgenin and furostan type saponins bearing a 3β-chacotriose moiety. Carbohydrate Research, 2002, 337, 2153-2159.	2.3	20
110	Synthesis of the Branched TrisaccharideLâ€Clyceroâ€Î±â€Dâ€mannoâ€heptopyranosylâ€(1Â→Â3)― [βâ€Dâ€glucopyranosylâ€(1Â→Â4)]â€Lâ€glyceroâ€Î±â€Dâ€mannoâ€heptopyranose, Protected to Allow Flexible toNeisseriaandHaemophilusLPS Inner Core Structures. Journal of Carbohydrate Chemistry, 2004, 23, 443-452.	e Access 1.1	20
111	Synthesis of part structures of Cryptococcus neoformans serotype C capsular polysaccharide. Carbohydrate Research, 2016, 433, 5-13.	2.3	20
112	A glycan FRET assay for detection and characterization of catalytic antibodies to the <i>Cryptococcus neoformans</i> capsule. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
113	What is the Sugar Code?. ChemBioChem, 2022, 23, .	2.6	20
114	Synthesis of Oligosaccharides Corresponding to Structures Found in Capsular Polysaccharides of <i>Cryptococcus neoformans</i> . Part 1. Journal of Carbohydrate Chemistry, 1993, 12, 955-967.	1.1	19
115	lsothermal Titration Calorimetric Studies on the Binding of Deoxytrimannoside Derivatives with Artocarpin: Implications for a Deep-Seated Combining Site in Lectins. Biochemistry, 2000, 39, 10755-10760.	2.5	19
116	A conformational study of α-d-Manp-(1→2)-α-d-Manp-(1→0)-l-Ser by NMR 1H,1H T-ROESY experiments and molecular-dynamics simulations. Carbohydrate Research, 2004, 339, 1331-1338.	2.3	19
117	Banana lectin is unique in its recognition of the reducing unit of 3-O-β-glucosyl/mannosyl disaccharides: a calorimetric study. Glycobiology, 2005, 15, 1043-1050.	2.5	19
118	Synthesis of bacterial carbohydrate surface structures containing Kdo and <i>glycero</i> -D- <i>manno</i> -heptose linkages. Carbohydrate Chemistry, 2012, , 40-60.	0.3	19
119	Tobacco Chemistry 64. A New Sucrose Ester from Greek Tobacco Acta Chemica Scandinavica, 1986, 40b, 724-730.	0.7	19
120	Synthesis ofO-glycopyranosyl-N-hydroxysuccinimides of glucose and lactose and their opening by nucleophiles into prespacer glycosides. Glycoconjugate Journal, 1992, 9, 122-125.	2.7	18
121	Synthesis, NMR, and conformational studies of methyl $\hat{I}\pm$ -d-mannopyranoside 2-, 3-, 4-, and 6-monophosphates. Carbohydrate Research, 1994, 263, 173-180.	2.3	18
122	Synthesis of oligosaccharides corresponding to structures found in capsular polysaccharides of Cryptococcus neoformans—ll. Bioorganic and Medicinal Chemistry, 1996, 4, 1867-1871.	3.0	18
123	Synthesis of a d,d- and l,d-heptose-containing hexasaccharide corresponding to a structure from Haemophilus ducreyi lipopolysaccharides. Tetrahedron: Asymmetry, 2000, 11, 481-492.	1.8	18
124	Synthesis of uronic acid-containing xylans found in wood and pulp. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 873-879.	1.3	18
125	Synthesis of Cryptococcus neoformans Capsular Polysaccharide Structures. IV. Construction of Thioglycoside Donor Blocks and Their Subsequent Assembly. Journal of Carbohydrate Chemistry, 2003, 22, 565-577.	1.1	18
126	Acidic Opening of 4,6- <i>O</i> -Orthoesters of Pyranosides. Journal of Carbohydrate Chemistry, 1989, 8, 663-668.	1.1	17

#	Article	IF	CITATIONS
127	Synthesis of oligosaccharides of bacterial origin containing heptoses, uronic acids and fructofuranoses as synthetic challenges. Topics in Current Chemistry, 1997, , 171-202.	4.0	17
128	Formation of anomeric phosphodiester linkages using H-phosphonate acceptors. Tetrahedron Letters, 1999, 40, 3049-3052.	1.4	17
129	Synthesis of the tetrasaccharide α-d-Glcp-(1→3)-α-d-Manp-(1→2)-α-d-Manp-(1→2)-α-d-Manp recognized by Calreticulin/Calnexin. Carbohydrate Research, 2005, 340, 2558-2562.	2.3	17
130	Structural, Biochemical, and In Vivo Investigations of the Threonine Synthase from Mycobacterium tuberculosis. Journal of Molecular Biology, 2008, 381, 622-633.	4.2	17
131	Cryptococcus neoformans Capsular GXM Conformation and Epitope Presentation: A Molecular Modelling Study. Molecules, 2020, 25, 2651.	3.8	17
132	Synthesis of L-glycero-D-manno-heptopyranose-containing oligosaccharide structures found in lipopolysaccharides from Haemophilus influenzae. Carbohydrate Research, 1997, 297, 251-260.	2.3	16
133	Synthesis of the Repeating Unit of the Capsular Polysaccharide of Streptococcus Pneumoniae Type 3 as a Building Block Suitable for Formation of Oligomers. Journal of Carbohydrate Chemistry, 1998, 17, 587-594.	1.1	16
134	Synthesis of an Inositol Phosphoglycan Fragment found in Leishmania Parasites. Tetrahedron, 2000, 56, 3969-3975.	1.9	16
135	Synthesis of benzyl protected β-d-GlcA-(1→2)-α-d-Man thioglycoside building blocks for construction of Cryptococcus neoformans capsular polysaccharide structures. Carbohydrate Research, 2014, 389, 57-65.	2.3	16
136	Synthesis of a hexasaccharide corresponding to part of the heptose-hexose region of the Salmonella Ra core, and a penta- and a tetra-saccharide that compose parts of this structure. Carbohydrate Research, 1994, 254, 81-90.	2.3	15
137	Synthesis of a tri- and a tetradeoxy analogue of methyl 3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranoside for investigation of the binding site of various plant lectins. Carbohydrate Research, 1998, 309, 207-212.	2.3	15
138	Studies of alkaline mediated phosphate migration in synthetic phosphoethanolamine l-glycero-d-manno-heptoside derivatives. Carbohydrate Research, 1998, 313, 193-202.	2.3	15
139	Atomic Mapping of the Sugar Interactions in One-Site and Two-Site Mutants of Cyanovirin-N by NMR Spectroscopy. Biochemistry, 2008, 47, 3625-3635.	2.5	15
140	Synthesis of Dihydrodiosgenin Glycosides as Mimetics of Bidesmosidic Steroidal Saponins. European Journal of Organic Chemistry, 2003, 2003, 4003-4011.	2.4	14
141	Synthesis of the Lewis b hexasaccharide and HSA-conjugates thereof. Glycoconjugate Journal, 2004, 21, 251-256.	2.7	14
142	Synthesis of a common tetrasaccharide motif of Haemophilus influenzae LPS inner core structures. Organic and Biomolecular Chemistry, 2008, 6, 1087.	2.8	14
143	Design and synthesis of novel P2 substituents in diol-based HIV protease inhibitors. European Journal of Medicinal Chemistry, 2010, 45, 160-170.	5.5	14
144	Efficient regioselective protection of myo-inositol via facile protecting group migration. Tetrahedron, 2011, 67, 618-623.	1.9	14

#	Article	IF	CITATIONS
	Synthesis of disaccharide analogues of methyl 4-O-α-d-galactopyranosyl-β-d-galactopyranoside ("methyl)	Tj ETQq1	1 0.784314 rg <mark>B</mark> 1
145	152, 301-304.	2.3	13
146	Design and synthesis of HIV-1 protease inhibitors. Novel tetrahydrofuran P2/P2′-groups interacting with Asp29/30 of the HIV-1 protease. Determination of binding from X-ray crystal structure of inhibitor protease complex. Bioorganic and Medicinal Chemistry, 2003, 11, 1107-1115.	3.0	13
147	A stereoselective approach to phosphodiester-linked oligomers of the repeating unit of Escherichia coli K52 capsular polysaccharide containing β-D-fructofuranosyl moieties. Tetrahedron: Asymmetry, 2005, 16, 121-125.	1.8	13
148	NMR study of hydroxy protons of di―and trimannosides, substructures of Manâ€9. Magnetic Resonance in Chemistry, 2007, 45, 1076-1080.	1.9	13
149	Synthesis of urine drug metabolites: glucuronic acid glycosides of phenol intermediates. Carbohydrate Research, 2007, 342, 970-974.	2.3	13
150	Variant synthetic pathway to glucuronic acid-containing di- and trisaccharide thioglycoside building blocks for continued synthesis of Cryptococcus neoformans capsular polysaccharide structures. Carbohydrate Research, 2008, 343, 2200-2208.	2.3	13
151	Exploring Cryptococcus neoformans capsule structure and assembly with a hydroxylamine-armed fluorescent probe. Journal of Biological Chemistry, 2020, 295, 4327-4340.	3.4	13
152	Syntheses of 4- and/or 4â€2-Phosphate Derivatives of Methyl 3- <i>O</i> - <scp> </scp> - <i>Glycero</i> -α- <scp>d</scp> - <i>manno</i> -heptopyranosyl- <scp> </scp> - <i>glyce and Their 2-(4-Trifluoro-acetamidophenyl)ethyl Glycoside Analogues Journal of Carbohydrate Chemistry, 1995, 14, 299-315.</i>	eroî±	<scp>d</scp> - <i< td=""></i<>
153	Synthesis ofCryptococcus neoformansCapsular Polysaccharide Structures. Part V: Construction of Glucuronic Acidâ€Containing Thioglycoside Donor Blocks. Journal of Carbohydrate Chemistry, 2004, 23, 403-416.	1.1	12
154	Synthesis of fused bicyclic thioglycosides of N-acylated glucosamine as analogues of mycothiol. Carbohydrate Research, 2007, 342, 1943-1946.	2.3	12
155	Synthesis of mucin O-glycan core structures as their p-nitro- and p-aminophenyl glycosides. Carbohydrate Research, 2011, 346, 1454-1466.	2.3	12
156	Direct Observation of Carbohydrate Hydroxyl Protons in Hydrogen Bonds with a Protein. Journal of the American Chemical Society, 2018, 140, 339-345.	13.7	12
157	The Interaction of Fluorinated Glycomimetics with DC-SIGN: Multiple Binding Modes Disentangled by the Combination of NMR Methods and MD Simulations. Pharmaceuticals, 2020, 13, 179.	3.8	12
158	Synthesis of a polyphosphorylated GPI-anchor core structure. Canadian Journal of Chemistry, 2002, 80, 1105-1111.	1.1	11
159	Synthesis of and molecular dynamics simulations on a tetrasaccharide corresponding to the repeating unit of the capsular polysaccharide from Salmonella enteritidis. Organic and Biomolecular Chemistry, 2009, 7, 1612.	2.8	11
160	Galectin–Glycan Interactions: Guidelines for Monitoring by ⁷⁷ Se NMR Spectroscopy, and Solvent (H ₂ O/D ₂ O) Impact on Binding. Chemistry - A European Journal, 2021, 27, 316-325.	3.3	11
161	Cross-reactivity between the mannan of Candida species, Klebsiella K24 polysaccharide and Salmonella C1 and E O-antigens is mediated by a terminal non-reducing beta-mannosyl residue. FEBS Journal, 1994, 220, 973-979.	0.2	10
162	Synthesis of tetra- and pentasaccharides corresponding to the capsular polysaccharide of Streptococcus pneumoniae type 9A&L, 9N and 9A. Carbohydrate Research, 2003, 338, 2605-2609.	2.3	10

#	Article	IF	CITATIONS
163	Impact of natural variation in bacterial F17G adhesins on crystallization behaviour. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1149-1159.	2.5	10
164	Synthesis of monodeoxy analogues of the trisaccharide α-d-Glcp-(1→3)-α-d-Manp-(1→2)-α-d-ManpOMe recognised by Calreticulin/Calnexin. Carbohydrate Research, 2006, 341, 1533-1542.	2.3	10
165	Reversible non-covalent derivatisation of carbon nanotubes with glycosides. Soft Matter, 2009, 5, 2713.	2.7	10
166	Synthesis of a Glucuronic Acid-Containing Thioglycoside Trisaccharide Building Block and Its Use in the Assembly of <i>Cryptococcus Neoformans</i> Capsular Polysaccharide Fragments. ChemistryOpen, 2015, 4, 729-739.	1.9	10
167	Synthesis of methyl 3-O-1±-d-galactopyranosyl-6-O-1±-d-mannopyranosyl-1±-d-mannopyranoside, methyl 3-O-α-d-glucopyranosyl-6-O-α-d-mannopyranosyl-α-d-mannopyranoside, methyl 6-O-α-d-galactopyranosyl-3-O-α-d-mannopyranosyl-α-d-mannopyranoside, and methyl 6-O-α-d-glucopyranosyl-3-O-α-d-mannopyranosyl-α-d-mannopyranoside. Carbohydrate Research, 1990, 203,	2.3	9
168	Synthesis of methyl 3-O-a-d-galactopyranosyl-6-O-a-d-mannopyranosyl-a-d-mannopyranoside, methyl 3-O-a-d-glucopyranosyl-6-O-a-d-mannopyranosyl-a-d-mannopyranoside, methyl 6-O-a-d-galactopyranosyl-3-O-a-d-mannopyranosyl-a-d-mannopyranoside, and methyl 6-O-a-d-glucopyranosyl-3-O-a-d-mannopyranosyl-a-d-mannopyranoside. Carbohydrate Research, 1990, 2000 4-75 4-80	2.3	9
169	Synthesis and Acidic Opening of Chlorinated Carbohydrate Orthoacetates. Journal of Carbohydrate Chemistry, 1996, 15, 507-512.	1.1	9
170	Improved synthesis of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α-d-mannopyranose. Carbohydrate Research, 2005, 340, 2675-2676.	2.3	9
171	Synthesis of phosphorylated Neisseria meningitidis inner core lipopolysaccharide structures. Tetrahedron: Asymmetry, 2009, 20, 875-882.	1.8	9
172	A Hexasaccharide Containing Rare 2â€ <i>O</i> â€Sulfateâ€Glucuronic Acid Residues Selectively Activates Heparin Cofactor II. Angewandte Chemie, 2017, 129, 2352-2357.	2.0	9
173	Alternate synthesis to d -glycero-β- d -manno-heptose 1,7-biphosphate. Carbohydrate Research, 2017, 450, 38-43.	2.3	9
174	Exploring antiviral and anti-inflammatory effects of thiol drugs in COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L372-L389.	2.9	9
175	Synthesis of oligosaccharides with oligoethylene glycol spacers and their conversion into glycoconjugates usingN,N,N?,N?-tetramethyl(succinimido)uronium tetrafluoroborate as coupling reagent. Glycoconjugate Journal, 1993, 10, 197-201.	2.7	8
176	Synthesis of glycoconjugates by covalent coupling of O-glycopyranosyl-N-hydroxysuccinimide derivatives of lactose to proteins and lipids and polymerization of their parent acryloyl derivatives into acrylamide polymers. Bioconjugate Chemistry, 1993, 4, 246-249.	3.6	8
177	EFFICIENT SYNTHESIS OF POLYLACTOSAMINE STRUCTURES THROUGH REGIOSELECTIVE GLYCOSYLATIONS1. Journal of Carbohydrate Chemistry, 2001, 20, 569-583.	1.1	8
178	Synthesis of phosphorylated 3,4-branched trisaccharides corresponding to LPS inner core structures of Neisseria meningitidis and Haemophilus influenzae. Carbohydrate Research, 2010, 345, 1331-1338.	2.3	8
179	Synthesis of building blocks for an iterative approach towards oligomers of the Streptococcus pneumoniae type 1 zwitterionic capsular polysaccharide repeating unit. Canadian Journal of Chemistry, 2016, 94, 940-960.	1.1	8
180	Crystal structure of an L chain optimised 14F7 anti-ganglioside Fv suggests a unique tumour-specificity through an unusual H-chain CDR3 architecture. Scientific Reports, 2018, 8, 10836.	3.3	8

#	Article	IF	CITATIONS
181	Recombinant mucin-type proteins carrying LacdiNAc on different <i>O</i> -glycan core chains fail to support <i>H. pylori</i> binding. Molecular Omics, 2020, 16, 243-257.	2.8	8
182	Synthesis of Sucros-6-yl D-Glucos-2-Yl Phosphate via the Hydrogenphosphonate Approach. Journal of Carbohydrate Chemistry, 1992, 11, 243-253.	1.1	7
183	Synthesis of D-Glucos-2-yl Sucros-2-yl Phosphate (Agrocinopin C) and <i>bis</i> (D-glucos-2-yl) Phosphate (Agrocinopin D). Journal of Carbohydrate Chemistry, 1993, 12, 1139-1147.	1.1	7
184	Synthesis of 6-O-acetyl-2,3,4-tri-O-[(S)-2-methylbutyryl]sucrose and the three regioisomers of 6-O-acetyl-2,3,4-O-[(S)-2-methylbutyryl]-di-O-[(S)-3-methylpentanoyl]sucrose, naturally occurring fatty acid esters of sucrose found in tobacco. Carbohydrate Research, 1996, 284, 271-277.	2.3	7
185	Peptide-based inhibitors of hepatitis C virus full-length NS3 (protease-helicase/NTPase): model compounds towards small molecule inhibitors. Bioorganic and Medicinal Chemistry, 2003, 11, 2955-2963.	3.0	7
186	Synthesis of Urine Drug Metabolites: Glucuronosyl Esters of Carboxymefloquine, Indoprofen, (S)â€Naproxen, and Desmethyl (S)â€Naproxen. Journal of Carbohydrate Chemistry, 2004, 23, 123-132.	1.1	7
187	Synthesis of 6-PEtN-α-D-GalpNAc-(1–>6)-β-D-Galp-(1–>4)-β-D-GlcpNAc-(1–>3)-β-D-Galp-(1–>4)-β-D-Glcp Haemophilus influenzae lipopolysacharide structure, and biotin and protein conjugates thereof. Beilstein Journal of Organic Chemistry, 2010, 6, 704-708.), a 2.2	7
188	Fine specificities of two lectins from Cymbosema roseum seeds: a lectin specific for high-mannose oligosaccharides and a lectin specific for blood group H type II trisaccharide. Glycobiology, 2011, 21, 925-933.	2.5	7
189	Synthesis of methyl 2-O-α-l-rhamnopyranosyl-α-l-rhamnopyranoside and two analogues thereof. Carbohydrate Research, 1986, 156, 214-217.	2.3	6
190	Synthesis of lactosamine-based building blocks on a practical scale and investigations of their assembly for the preparation of 19F-labelled LacNAc oligomers. Organic and Biomolecular Chemistry, 2019, 17, 2265-2278.	2.8	6
191	Convergent total synthesis of Cryptococcus neoformans serotype B capsule repeating motif. Carbohydrate Research, 2020, 497, 108150.	2.3	6
192	A detailed picture of a protein–carbohydrate hydrogen-bonding network revealed by NMR and MD simulations. Glycobiology, 2021, 31, 508-518.	2.5	6
193	Syntheses of four fatty acid esters of sucrose found in type B trichomes ofSolanum berthaultii Hawkes (wild potato), including the major component, 6-O-decanoyl-3,4-di-O-isobutyrylsucrose. Carbohydrate Research, 1990, 205, 61-70.	2.3	5
	Synthesis of p -trifluoroacetamidophenyl 2-acetamido-4- O -(2-acetamido-2-deoxy-β- d) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 5	0 232 Td (-g
194	disaccharide repeating unit of the capsular polysaccharide of Haemophilus influenzae type e. Carbobydrate Research, 1992, 225, 163-167	2.3	5
195	Synthesis of Oligosaccharides Corresponding to Structures Found in Capsular Polysaccharides of <i>Cryptococcus Neoformans</i> . Part 3. Two Regioselectively Acetylated Tetrasaccharides Journal of Carbohydrate Chemistry, 1997, 16, 973-981.	1.1	5
196	Synthesis of site-specific, deuterium-substituted α-l-Rhap-(2)-α-l-Rhap-OMe. Carbohydrate Research, 1998, 312, 233-237.	2.3	5
197	A new route for the synthesis of Streptococcus pneumoniae 19F and 19A capsular polysaccharide fragments avoiding the β-mannosamine glycosylation step. Carbohydrate Research, 2009, 344, 1442-1448.	2.3	5
198	Synthesis of the Lewis b pentasaccharide and a HSA-conjugate thereof. Tetrahedron, 2010, 66, 7850-7855.	1.9	5

#	Article	IF	CITATIONS
199	Large scale synthesis and regioselective protection schemes of ethyl 2-azido-2-deoxy-1-thio-α- d -cellobioside for preparation of heparin thiodisaccharide building blocks. Carbohydrate Research, 2017, 440-441, 16-31.	2.3	5
200	A General Method for the Divergent Synthesis of Câ€9 Functionalised Sialic Acid Derivatives. European Journal of Organic Chemistry, 2020, 2020, 6102-6108.	2.4	5
201	Synthesis of oligosaccharides with oligoethylene glycolspacers and their conversion into glycoconjugates usingN,N,N ? ,N ? -tetramethyl(succinimido)u roniu mtetrafluoroborate as coupling reagent. Glycoconjugate Journal, 1993, 10, 461-465.	2.7	4
202	Communication: Use of an Î \pm -Haloether for the Acetonation of Carbohydrates Journal of Carbohydrate Chemistry, 1991, 10, 499-504.	1.1	3
203	Efficient Synthesis of Spacer-linked Dimers of N-Acetyllactosamine Using Microvawe-assisted Pyridinium Triflate-promoted Glycosylations with Oxazoline Donors. Synlett, 2003, 2003, 1255.	1.8	3
204	Defining substrate interactions with calreticulin: an isothermal titration calorimetric study. Glycoconjugate Journal, 2008, 25, 797-802.	2.7	3
205	S-Glycosylation. , 2008, , 661-697.		3
206	Synthesis of type 1 Lewis b hexasaccharide antigen structures featuring flexible incorporation of <scp>l</scp> -[U- ¹³ C ₆]-fucose for NMR binding studies. Organic and Biomolecular Chemistry, 2020, 18, 4452-4458.	2.8	3
207	Key role of a structural water molecule for the specificity of 14F7—An antitumor antibody targeting the NeuGc GM3 ganglioside. Glycobiology, 2021, 31, 1500-1509.	2.5	3
208	S-Glycosylation. , 2001, , 643-671.		3
209	Synthesis of a library of 2-fluoro-2-deoxy-derivatives of the trimannoside methyl α-D-Man-(1Â→Â3)-[α-D-Man-(1Â→Â6)]-α-D-Man and the dimannosides methyl α-D-Man-(1Â→Â3)-α-D-Man ar α-D-Man-(1Â→Â6)-α-D-Man. Carbohydrate Research, 2022, 512, 108515.	ndamaethyl	3
210	Syntheses of p -trifluoroacetamidophenyl 4- O -α- d -glucopyranosyl-α- d -galactopyranoside and p -trifluoroacetamidophenyl 6- O -α- d -glucopyranosyl-α- d -galactopyranoside. Carbohydrate Research, 1983, 114, 322-327.	2.3	2
211	An Unusual Cyclic System: Derivatives ofN-Acetyl [2-Deoxy-β-D-Mannopyranosid]Urono-6,2-Lactam. Journal of Carbohydrate Chemistry, 1991, 10, 1059-1065.	1.1	2
212	Conjugation of monosaccharides — synthesis of glycosidic linkages in glycosides, oligosaccharides and polysaccharides. , 1999, , 150-186.		2
213	Synthesis of four (4″-, 2″-, 2′-, and 6-) monodeoxy analogs of the trisaccharide α-d-Glcp-(1→3)-α-d-Manp-(1→2)-α-d-ManpOMe recognized by Calreticulin/Calnexin. Carbohydrate Research, 20 414, 65-71.	0253	2
214	Protective Group Strategies. , 2005, , .		2
215	Studies of the binding activity of phage G13 to synthetic trisaccharides analogous to binding structures inSalmonella typhimurium andEscherichia coli C core saccharide. Correlation between conformation and binding activity. Journal of Molecular Recognition, 1991, 4, 121-128.	2.1	1
216	Carbohydrates as ligands: synthetic and biological aspects. Carbohydrate Research, 2011, 346, 1357.	2.3	1

#	Article	IF	CITATIONS
217	Chemical synthesis of a sulfated d-glucosamine library and evaluation of cell proliferation capabilities. Carbohydrate Research, 2020, 495, 108085.	2.3	1
218	Strategies in Oligosaccharide Synthesis. , 2021, , 1-48.		1
219	SmI2/Water/Amine Mediates Cleavage of Allyl Ether Protected Alcohols: Application in Carbohydrate Synthesis and Mechanistic Considerations ChemInform, 2004, 35, no.	0.0	0
220	Foreword. Carbohydrate Research, 2008, 343, 1507.	2.3	0
221	Per Johan Garegg. Advances in Carbohydrate Chemistry and Biochemistry, 2010, 64, 20-24.	0.9	0
222	Facile anomer-oriented syntheses of 4-methylumbelliferyl sialic acid glycosides. Organic and Biomolecular Chemistry, 2021, 19, 6644-6649.	2.8	0
223	Synthesis of Fucose Derivatives with Thiol Motifs towards Suicide Inhibition of Helicobacter pylori. Molecules, 2020, 25, 4281.	3.8	0
224	Synthesis of a Lewis b hexasaccharide thioglycoside donor and its use towards an extended mucin core Tn heptasaccharide structure and a photoreactive biotinylated serine linked hexasaccharide.	2.8	0

224 core In heptasaccharide structure and a photores Organic and Biomolecular Chemistry, 2022, , .