Cao-Feng Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/635399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biologically Inspired Stretchable, Multifunctional, and 3D Electronic Skin by Strain Visualization and Triboelectric Pressure Sensing. Small Science, 2022, 2, 2100083.	9.9	34
2	Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Advanced Materials Technologies, 2022, 7, .	5.8	81
3	Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy, 2022, 92, 106700.	16.0	108
4	Ferro-Pyro-Phototronic Effect in Monocrystalline 2D Ferroelectric Perovskite for High-Sensitive, Self-Powered, and Stable Ultraviolet Photodetector. ACS Nano, 2022, 16, 1280-1290.	14.6	45
5	Recent advances in curved image sensor arrays for bioinspired vision system. Nano Today, 2022, 42, 101366.	11.9	16
6	Bimodal Tactile Sensor without Signal Fusion for User-Interactive Applications. ACS Nano, 2022, 16, 2789-2797.	14.6	54
7	Anisotropic Carrier Mobility from 2H WSe ₂ . Advanced Materials, 2022, 34, e2108615.	21.0	11
8	Self-powered high-performance flexible GaN/ZnO heterostructure UV photodetectors with piezo-phototronic effect enhanced photoresponse. Nano Energy, 2022, 94, 106945.	16.0	73
9	Self-powered photodetector for ultralow power density UV sensing. Nano Today, 2022, 43, 101399.	11.9	57
10	Molten Salt Shielded Synthesis of Monodisperse Layered CaZnOSâ€Based Semiconductors for Piezophotonic and Xâ€Ray Detection Applications. Small, 2022, 18, e2107437.	10.0	20
11	Bidirectional Photoresponse in Perovskiteâ€ZnO Heterostructure for Fully Opticalâ€Controlled Artificial Synapse. Advanced Optical Materials, 2022, 10, .	7.3	30
12	A method for quantitatively separating the piezoelectric component from the as-received "Piezoelectric―signal. Nature Communications, 2022, 13, 1391.	12.8	68
13	Research Progress on Hydrogel–Elastomer Adhesion. Materials, 2022, 15, 2548.	2.9	6
14	Biodegradable, Breathable Leaf Veinâ€Based Tactile Sensors with Tunable Sensitivity and Sensing Range. Small, 2022, 18, e2106906.	10.0	28
15	Flexible and Stretchable Strategies for Electronic Skins: Materials, Structure, and Integration. ACS Applied Electronic Materials, 2022, 4, 1-26.	4.3	20
16	Strainâ€Insensitive Selfâ€Powered Tactile Sensor Arrays Based on Intrinsically Stretchable and Patternable Ultrathin Conformal Wrinkled Grapheneâ€Elastomer Composite. Advanced Functional Materials, 2022, 32, .	14.9	47
17	Energy Conversion Analysis of Multilayered Triboelectric Nanogenerators for Synergistic Rain and Solar Energy Harvesting. Advanced Materials, 2022, 34, e2202238.	21.0	63
18	Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection. Nano Energy, 2021, 81, 105570.	16.0	100

#	Article	IF	CITATIONS
19	Epitaxial lift-off for controllable single-crystalline perovskites. Science Bulletin, 2021, 66, 6-8.	9.0	18
20	Mechanoluminescent materials for athletic analytics in sports science. Science Bulletin, 2021, 66, 206-209.	9.0	27
21	Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retinaâ€Like Vision Sensing. Advanced Materials, 2021, 33, e2006006.	21.0	87
22	Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber /MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. Advanced Functional Materials, 2021, 31, 2008006.	14.9	340
23	A novel visible light sensing and recording system enabled by integration of photodetector and electrochromic devices. Nanoscale, 2021, 13, 9177-9184.	5.6	8
24	Single-mode lasing of CsPbBr ₃ perovskite NWs enabled by the Vernier effect. Nanoscale, 2021, 13, 4432-4438.	5.6	25
25	Wavelength tunable single-mode lasing from cesium lead halide perovskite microwires. Applied Physics Letters, 2021, 118, .	3.3	11
26	Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Science Advances, 2021, 7, .	10.3	65
27	Piezophototronic Effect in Nanosensors. Small Science, 2021, 1, 2000060.	9.9	28
28	Stable Ultrathin Perovskite/Polyvinylidene Fluoride Composite Films for Imperceptible Multi olor Fluorescent Anti ounterfeiting Labels. Advanced Materials Technologies, 2021, 6, 2100229.	5.8	26
29	Asymmetric Superhydrophobic Textiles for Electromagnetic Interference Shielding, Photothermal Conversion, and Solar Water Evaporation. ACS Applied Materials & Interfaces, 2021, 13, 28996-29007.	8.0	65
30	Tunable and Nacreâ€Mimetic Multifunctional Electronic Skins for Highly Stretchable Contactâ€Noncontact Sensing. Small, 2021, 17, e2100542.	10.0	69
31	A Selfâ€Powered Photodetector Based on MAPbI ₃ Single rystal Film/n‣i Heterojunction with Broadband Response Enhanced by Pyroâ€Phototronic and Piezoâ€Phototronic Effects. Small, 2021, 17, e2101572.	10.0	32
32	Spherical Triboelectric Nanogenerator with Dense Point Contacts for Harvesting Multidirectional Water Wave and Vibration Energy. ACS Energy Letters, 2021, 6, 2809-2816.	17.4	48
33	A high performance CsPbBr3 microwire based photodetector boosted by coupling plasmonic and piezo-phototronic effects. Nano Energy, 2021, 85, 105951.	16.0	38
34	Piezotronics in twoâ€dimensional materials. InformaÄnÃ-Materiály, 2021, 3, 987-1007.	17.3	54
35	MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy, 2021, 86, 106077.	16.0	44
36	Piezo-phototronic effect enhanced performance of a p-ZnO NW based UV–Vis–NIR photodetector. Nano Energy, 2021, 86, 106090.	16.0	17

#	Article	IF	CITATIONS
37	Bioinspired Multifunctional Photonicâ€Electronic Smart Skin for Ultrasensitive Health Monitoring, for Visual and Selfâ€Powered Sensing. Advanced Materials, 2021, 33, e2102332.	21.0	107
38	Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications. Chemical Engineering Journal, 2021, 420, 129864.	12.7	79
39	Mechanoluminescent hybrids from a natural resource for energyâ€related applications. InformaÄnÃ- Materiály, 2021, 3, 1272-1284.	17.3	53
40	A multimodal ion electronic skin for decoupling temperature and strain. Science Bulletin, 2021, 66, 2437-2437.	9.0	2
41	Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells. Nanotechnology, 2021, 32, 475204.	2.6	18
42	Flexible Ag Microparticle/MXene-Based Film for Energy Harvesting. Nano-Micro Letters, 2021, 13, 201.	27.0	57
43	Metal Halide Perovskite Arrays: From Construction to Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2005230.	14.9	40
44	Flexible Conductive Polyimide Fiber/MXene Composite Film for Electromagnetic Interference Shielding and Joule Heating with Excellent Harsh Environment Tolerance. ACS Applied Materials & Interfaces, 2021, 13, 50368-50380.	8.0	85
45	Front Cover Image. InformaÄnÃ-Materiály, 2021, 3, .	17.3	2
46	Recent progress in tactile sensors and their applications in intelligent systems. Science Bulletin, 2020, 65, 70-88.	9.0	132
47	CVD growth of perovskite/graphene films for high-performance flexible image sensor. Science Bulletin, 2020, 65, 343-349.	9.0	72
48	Lateral bipolar photoresistance effect in the CIGS heterojunction and its application in position sensitive detector and memory device. Science Bulletin, 2020, 65, 477-485.	9.0	28
49	Reversible Conversion between Schottky and Ohmic Contacts for Highly Sensitive, Multifunctional Biosensors. Advanced Functional Materials, 2020, 30, 1907999.	14.9	61
50	Flexible GaN microwire-based piezotronic sensory memory device. Nano Energy, 2020, 78, 105312.	16.0	13
51	53â€5: Lateâ€News Paper: aâ€IGZO TFT Based Active Matrix Pressure Sensor by Integrating ZnO Nanowires as Sensing Unit. Digest of Technical Papers SID International Symposium, 2020, 51, 789-791.	0.3	1
52	Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsystems and Nanoengineering, 2020, 6, 62.	7.0	69
53	Force-induced charge carrier storage: a new route for stress recording. Light: Science and Applications, 2020, 9, 182.	16.6	83
54	Recent Progress in Optoelectronic Synapses for Artificial Visualâ€Perception System. Small Structures, 2020, 1, 2000029.	12.0	90

#	Article	IF	CITATIONS
55	High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nature Communications, 2020, 11, 5629.	12.8	48
56	Bioinspired Selfâ€Healing Human–Machine Interactive Touch Pad with Pressure‣ensitive Adhesiveness on Targeted Substrates. Advanced Materials, 2020, 32, e2004290.	21.0	210
57	Triboelectric-polarization-enhanced high sensitive ZnO UV sensor. Nano Today, 2020, 33, 100873.	11.9	33
58	Quantifying electron-transfer in liquid-solid contact electrification. Science Bulletin, 2020, 65, 868-869.	9.0	7
59	Triboelectric Nanogenerator Enhanced Schottky Nanowire Sensor for Highly Sensitive Ethanol Detection. Nano Letters, 2020, 20, 4968-4974.	9.1	58
60	Mechanism of magnetic field-modulated luminescence from lanthanide ions in inorganic crystal: a review. Rare Metals, 2020, 39, 1113-1126.	7.1	18
61	Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors. Applied Physics Reviews, 2020, 7, .	11.3	30
62	Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy, 2020, 70, 104546.	16.0	171
63	Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. Journal of Materiomics, 2020, 6, 86-101.	5.7	102
64	Strain-modulated high-quality ZnO cavity modes on different crystal orientations. Nanotechnology, 2020, 31, 225202.	2.6	0
65	Piezoelectricity in Multilayer Black Phosphorus for Piezotronics and Nanogenerators. Advanced Materials, 2020, 32, e1905795.	21.0	84
66	Human spinal reflex like strain-controlled power devices based on piezotronic effect. Science Bulletin, 2020, 65, 1228-1230.	9.0	1
67	Flexible sliding sensor for simultaneous monitoring deformation and displacement on a robotic hand/arm. Nano Energy, 2020, 73, 104764.	16.0	58
68	High-performance Sb-doped p-ZnO NW films for self-powered piezoelectric strain sensors. Nano Energy, 2020, 73, 104744.	16.0	52
69	Mechanoluminescence materials for advanced artificial skin. Science Bulletin, 2020, 65, 1147-1149.	9.0	62
70	Piezotronic Synapse Based on a Single GaN Microwire for Artificial Sensory Systems. Nano Letters, 2020, 20, 3761-3768.	9.1	26
71	Dynamically Modulated GaN Whispering Gallery Lasing Mode for Strain Sensor. Advanced Functional Materials, 2019, 29, 1905051.	14.9	56
72	Fiber-Integrated Reversibly Wavelength-Tunable Nanowire Laser Based on Nanocavity Mode Coupling. ACS Nano, 2019, 13, 9965-9972.	14.6	11

#	Article	IF	CITATIONS
73	Laser-induced photoresistance effect in Si-based vertical standing MoS ₂ nanoplate heterojunctions for self-powered high performance broadband photodetection. Journal of Materials Chemistry C, 2019, 7, 10642-10651.	5.5	24
74	Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires. Chemical Reviews, 2019, 119, 9303-9359.	47.7	213
75	Mechanoluminescence enhancement of ZnS:Cu,Mn with piezotronic effect induced trap-depth reduction originated from PVDF ferroelectric film. Nano Energy, 2019, 63, 103861.	16.0	50
76	Electronic Skin for Closed-Loop Systems. ACS Nano, 2019, 13, 12287-12293.	14.6	103
77	Ultrabroadband, Large Sensitivity Position Sensitivity Detector Based on a Bi ₂ Te _{2.7} Se _{0.3} /Si Heterojunction and Its Performance Improvement by Pyroâ€Phototronic Effect. Advanced Electronic Materials, 2019, 5, 1900786.	5.1	33
78	Two Photon–Pumped Whisperingâ€Gallery Mode Lasing and Dynamic Regulation. Advanced Science, 2019, 6, 1900916.	11.2	9
79	WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics. Nano Energy, 2019, 65, 104001.	16.0	48
80	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900090.	6.1	80
81	Ferroelectricity-induced performance enhancement of V-doped ZnO/Si photodetector by direct energy band modulation. Nano Energy, 2019, 65, 104046.	16.0	36
82	Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy, 2019, 66, 104143.	16.0	249
83	Achieving high-resolution pressure mapping via flexible GaN/ ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy, 2019, 58, 633-640.	16.0	120
84	Investigating the interlayer electron transport and its influence on the whole electric properties of black phosphorus. Science Bulletin, 2019, 64, 254-260.	9.0	16
85	Wavelengthâ€Tunable Micro/Nanolasers. Advanced Optical Materials, 2019, 7, 1900275.	7.3	13
86	Voltage-Driven Room-Temperature Resistance and Magnetization Switching in Ceramic TiO ₂ /PAA Nanoporous Composite Films. ACS Applied Materials & Interfaces, 2019, 11, 21661-21667.	8.0	35
87	Crystal-Orientation-Related Dynamic Tuning of the Lasing Spectra of CdS Nanobelts by Piezoelectric Polarization. ACS Nano, 2019, 13, 5049-5057.	14.6	21
88	Controllable Growth of Aligned Monocrystalline CsPbBr ₃ Microwire Arrays for Piezoelectricâ€Induced Dynamic Modulation of Singleâ€Mode Lasing. Advanced Materials, 2019, 31, e1900647.	21.0	76
89	Piezo-phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells. ACS Nano, 2019, 13, 4507-4513.	14.6	82
90	Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. Science Bulletin, 2019, 64, 698-704.	9.0	33

#	Article	IF	CITATIONS
91	Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2019, 59, 302-310.	16.0	285
92	Coupled Ionâ€Gel Channelâ€Width Gating and Piezotronic Interface Gating in ZnO Nanowire Devices. Advanced Functional Materials, 2019, 29, 1807837.	14.9	27
93	Fabrication of Largeâ€Area Bimodal Sensors by Allâ€Inkjetâ€Printing. Advanced Materials Technologies, 2019, 4, 1800703.	5.8	40
94	A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy, 2019, 59, 422-433.	16.0	198
95	Activating MoS ₂ basal planes for hydrogen evolution through direct CVD morphology control. Journal of Materials Chemistry A, 2019, 7, 27603-27611.	10.3	24
96	Triboiontronic Transistor of MoS ₂ . Advanced Materials, 2019, 31, e1806905.	21.0	93
97	Dynamic regulating of single-mode lasing in ZnO microcavity by piezoelectric effect. Materials Today, 2019, 24, 33-40.	14.2	32
98	Flexible Photodetector Arrays Based on Patterned CH ₃ NH ₃ Pbl _{3â^'} <i>_x</i> Cl <i>_x</i> Perovskite Film for Realâ€Time Photosensing and Imaging. Advanced Materials, 2019, 31, e1805913.	21.0	174
99	Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications. Nano Energy, 2019, 55, 389-400.	16.0	126
100	Facile access to shape-controlled growth of WS ₂ monolayer via environment-friendly method. 2D Materials, 2019, 6, 015007.	4.4	18
101	Selfâ€Powered Tactile Sensor Array Systems Based on the Triboelectric Effect. Advanced Functional Materials, 2019, 29, 1806379.	14.9	122
102	Piezoelectric Polyacrylonitrile Nanofiber Film-Based Dual-Function Self-Powered Flexible Sensor. ACS Applied Materials & Interfaces, 2018, 10, 15855-15863.	8.0	132
103	Piezophototronic Effect Enhanced Photoresponse of the Flexible Cu(In,Ga)Se ₂ (CIGS) Heterojunction Photodetectors. Advanced Functional Materials, 2018, 28, 1707311.	14.9	58
104	Detection and quantification of phenol in liquid and gas phases using a clay/dye composite. Journal of Industrial and Engineering Chemistry, 2018, 62, 284-290.	5.8	9
105	A Highly Stretchable Transparent Selfâ€Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Advanced Materials, 2018, 30, e1706738.	21.0	315
106	Piezoâ€Phototronic Effect Modulated Deep UV Photodetector Based on ZnOâ€Ga ₂ O ₃ Heterojuction Microwire. Advanced Functional Materials, 2018, 28, 1706379.	14.9	126
107	Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 2018, 9, 244.	12.8	1,034
108	A vertically layered MoS ₂ /Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. Journal of Materials Chemistry C, 2018, 6, 3233-3239.	5.5	132

#	Article	IF	CITATIONS
109	Tunable Tribotronic Dualâ€Gate Logic Devices Based on 2DÂMoS ₂ and Black Phosphorus. Advanced Materials, 2018, 30, e1705088.	21.0	105
110	Printable Skinâ€Driven Mechanoluminescence Devices via Nanodoped Matrix Modification. Advanced Materials, 2018, 30, e1800291.	21.0	178
111	Networks of High Performance Triboelectric Nanogenerators Based on Liquid–Solid Interface Contact Electrification for Harvesting Lowâ€Frequency Blue Energy. Advanced Energy Materials, 2018, 8, 1800705.	19.5	182
112	ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect. Nano Energy, 2018, 49, 508-514.	16.0	95
113	High Br [–] Content CsPb(Cl _{<i>y</i>} Br _{1–<i>y</i>}) ₃ Perovskite Nanocrystals with Strong Mn ²⁺ Emission through Diverse Cation/Anion Exchange Engineering. ACS Applied Materials & Interfaces, 2018, 10, 11739-11746.	8.0	92
114	Oxygen-assisted preparation of mechanoluminescent ZnS:Mn for dynamic pressure mapping. Nano Research, 2018, 11, 1967-1976.	10.4	45
115	Ultrahigh, Ultrafast, and Selfâ€Powered Visibleâ€Nearâ€Infrared Optical Positionâ€Sensitive Detector Based on a CVDâ€Prepared Vertically Standing Fewâ€Layer MoS ₂ /Si Heterojunction. Advanced Science, 2018, 5, 1700502.	11.2	87
116	Piezoelectric Effect Tuning on ZnO Microwire Whispering-Gallery Mode Lasing. ACS Nano, 2018, 12, 11899-11906.	14.6	51
117	Piezo-phototronic effect on optoelectronic nanodevices. MRS Bulletin, 2018, 43, 952-958.	3.5	38
118	Recent Advances in Largeâ€6cale Tactile Sensor Arrays Based on a Transistor Matrix. Advanced Materials Interfaces, 2018, 5, 1801061.	3.7	48
119	Large and Ultrastable Allâ€Inorganic CsPbBr ₃ Monocrystalline Films: Lowâ€Temperature Growth and Application for Highâ€Performance Photodetectors. Advanced Materials, 2018, 30, e1802110.	21.0	94
120	Piezo-phototronic Effect Enhanced Photodetector Based on CH ₃ NH ₃ PbI ₃ Single Crystals. ACS Nano, 2018, 12, 10501-10508.	14.6	67
121	In ₂ O ₃ Nanowire Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing Stemming from Negative Capacitance and Their Logic Applications. ACS Nano, 2018, 12, 9608-9616.	14.6	32
122	The Exploration of Carrier Behavior in the Inverted Mixed Perovskite Singleâ€Crystal Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800224.	3.7	58
123	MoS ₂ Negativeâ€Capacitance Fieldâ€Effect Transistors with Subthreshold Swing below the Physics Limit. Advanced Materials, 2018, 30, e1800932.	21.0	87
124	Piezoâ€Phototronic Effect for Enhanced Flexible MoS ₂ /WSe ₂ van der Waals Photodiodes. Advanced Functional Materials, 2018, 28, 1802849.	14.9	130
125	Recent progress in flexible pressure sensor arrays: from design to applications. Journal of Materials Chemistry C, 2018, 6, 11878-11892.	5.5	194
126	Progress in piezotronic and piezo-phototronic effect of 2D materials. 2D Materials, 2018, 5, 042003.	4.4	62

#	Article	IF	CITATIONS
127	Tunable single-mode lasing in a single semiconductor microrod. Optics Express, 2018, 26, 30021.	3.4	6
128	Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging. Optics Communications, 2017, 395, 24-28.	2.1	40
129	Full Dynamicâ€Range Pressure Sensor Matrix Based on Optical and Electrical Dualâ€Mode Sensing. Advanced Materials, 2017, 29, 1605817.	21.0	176
130	Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect. ACS Nano, 2017, 11, 1894-1900.	14.6	79
131	A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. APL Materials, 2017, 5, .	5.1	53
132	Visualization Recording and Storage of Pressure Distribution through a Smart Matrix Based on the Piezotronic Effect. Advanced Materials, 2017, 29, 1701253.	21.0	59
133	Light-Emission Enhancement in a Flexible and Size-Controllable ZnO Nanowire/Organic Light-Emitting Diode Array by the Piezotronic Effect. ACS Photonics, 2017, 4, 1344-1349.	6.6	65
134	Flexibly and Repeatedly Modulating Lasing Wavelengths in a Single Core–Shell Semiconductor Microrod. ACS Nano, 2017, 11, 5808-5814.	14.6	26
135	Piezotronics and piezo-phototronics based on <i>a</i> -axis nano/microwires: fundamentals and applications. Semiconductor Science and Technology, 2017, 32, 043005.	2.0	22
136	Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting. ACS Nano, 2017, 11, 3883-3889.	14.6	53
137	Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. Nano Energy, 2017, 34, 578-585.	16.0	128
138	Black Phosphorus Quantum Dots with Tunable Memory Properties and Multilevel Resistive Switching Characteristics. Advanced Science, 2017, 4, 1600435.	11.2	175
139	Recent progress in piezo-phototronics with extended materials, application areas and understanding. Semiconductor Science and Technology, 2017, 32, 053002.	2.0	22
140	Photoluminescence Tuning in Stretchable PDMS Film Grafted Doped Core/Multishell Quantum Dots for Anticounterfeiting. Advanced Functional Materials, 2017, 27, 1700051.	14.9	89
141	"Energy Relay Center―for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS. Physical Chemistry Chemical Physics, 2017, 19, 1190-1208.	2.8	35
142	Plasmon-Induced Accelerated Exciton Recombination Dynamics in ZnO/Ag Hybrid Nanolasers. ACS Photonics, 2017, 4, 2419-2424.	6.6	38
143	Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology. Scientific Reports, 2017, 7, 10521.	3.3	77
144	Triboelectrification-enabled touch sensing for self-powered position mapping and dynamic tracking by a flexible and area-scalable sensor array. Nano Energy, 2017, 41, 387-393.	16.0	69

#	Article	IF	CITATIONS
145	Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG Asia Materials, 2017, 9, e418-e418.	7.9	57
146	Flexible electrically pumped random lasing from ZnO nanowires based on metal–insulator–semiconductor structure. Chinese Physics B, 2017, 26, 067301.	1.4	9
147	Performance Limits of the Selfâ€Aligned Nanowire Topâ€Gated MoS ₂ Transistors. Advanced Functional Materials, 2017, 27, 1602250.	14.9	37
148	A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells. Nano Research, 2017, 10, 776-784.	10.4	22
149	Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing. Optics Express, 2017, 25, 21025.	3.4	9
150	Efficiency enhance the photoluminescence of ZnO nanowires array by the surface plasmonic effect of Au nanoparticles. International Journal of Nanomanufacturing, 2016, 12, 308.	0.3	0
151	Functional Devices for Clean Energy and Advanced Sensor Applications. Journal of Nanomaterials, 2016, 2016, 1-2.	2.7	0
152	Recent progress of ZnO hierarchical nanostructure for photovoltaic application. International Journal of Nanomanufacturing, 2016, 12, 336.	0.3	2
153	Progress in Piezoâ€Phototronicâ€Effectâ€Enhanced Lightâ€Emitting Diodes and Pressure Imaging. Advanced Materials, 2016, 28, 1535-1552.	21.0	110
154	Dynamic Triboelectrificationâ€Induced Electroluminescence and its Use in Visualized Sensing. Advanced Materials, 2016, 28, 6656-6664.	21.0	140
155	Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli. ACS Nano, 2016, 10, 11037-11043.	14.6	37
156	Transparent conducting oxide-free and Pt-free flexible dye-sensitized solar cells employing CuS-nanosheet networks as counter electrodes. Journal of Materials Chemistry A, 2016, 4, 6569-6576.	10.3	56
157	CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping. Nanoscale, 2016, 8, 8078-8082.	5.6	78
158	Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Science China Materials, 2016, 59, 182-190.	6.3	51
159	Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. Nano Energy, 2016, 23, 27-33.	16.0	119
160	CuS nanotrough-networks for highly stable transparent conducting electrodes. Journal of Materials Chemistry C, 2016, 4, 4733-4739.	5.5	16
161	Progress in piezo-phototronic effect modulated photovoltaics. Journal of Physics Condensed Matter, 2016, 28, 433001.	1.8	16
162	A Stretchable Nanogenerator with Electric/Light Dualâ€Mode Energy Conversion. Advanced Energy Materials, 2016, 6, 1600829.	19.5	74

#	Article	IF	CITATIONS
163	Growth of GaN micro/nanolaser arrays by chemical vapor deposition. Nanotechnology, 2016, 27, 355201.	2.6	8
164	Rational design of an ITO/CuS nanosheet network composite film as a counter electrode for flexible dye sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 8130-8134.	5.5	17
165	CdS@SiO ₂ Core-Shell Electroluminescent Nanorod Arrays Based on a Metal-Insulator-Semiconductor Structure. Small, 2016, 12, 5734-5740.	10.0	14
166	Enhancing Photoresponsivity of Self-Aligned MoS ₂ Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires. ACS Nano, 2016, 10, 7451-7457.	14.6	86
167	Progress in piezo-phototronic effect enhanced photodetectors. Journal of Materials Chemistry C, 2016, 4, 11341-11354.	5.5	47
168	Bioinspired Electronic Whisker Arrays by Pencilâ€Drawn Paper for Adaptive Tactile Sensing. Advanced Electronic Materials, 2016, 2, 1600093.	5.1	59
169	A Bambooâ€Like GaN Microwireâ€Based Piezotronic Memristor. Advanced Functional Materials, 2016, 26, 5307-5314.	14.9	24
170	Selfâ€Powered Highâ€Resolution and Pressureâ€5ensitive Triboelectric Sensor Matrix for Realâ€Time Tactile Mapping. Advanced Materials, 2016, 28, 2896-2903.	21.0	344
171	Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects. ACS Nano, 2016, 10, 6074-6079.	14.6	75
172	Recent Progress in Electronic Skin. Advanced Science, 2015, 2, 1500169.	11.2	789
173	Interface-Free Area-Scalable Self-Powered Electroluminescent System Driven by Triboelectric Generator. Scientific Reports, 2015, 5, 13658.	3.3	18
174	Piezoâ€phototronic Boolean Logic and Computation Using Photon and Strain Dualâ€Gated Nanowire Transistors. Advanced Materials, 2015, 27, 940-947.	21.0	46
175	Enhancing Light Emission of ZnOâ€Nanofilm/Siâ€Micropillar Heterostructure Arrays by Piezoâ€Phototronic Effect. Advanced Materials, 2015, 27, 4447-4453.	21.0	81
176	A Streaming Potential/Currentâ€Based Microfluidic Direct Current Generator for Selfâ€Powered Nanosystems. Advanced Materials, 2015, 27, 6482-6487.	21.0	104
177	Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy. Advanced Functional Materials, 2015, 25, 5691-5697.	14.9	210
178	Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. Advanced Electronic Materials, 2015, 1, 1500142.	5.1	226
179	Temperature Dependence of the Piezophototronic Effect in CdS Nanowires. Advanced Functional Materials, 2015, 25, 5277-5284.	14.9	50
180	Piezoâ€Phototronic Enhanced UV Sensing Based on a Nanowire Photodetector Array. Advanced Materials, 2015, 27, 7963-7969.	21.0	115

#	Article	IF	CITATIONS
181	Recent Progress in Ohmic/Schottky-Contacted ZnO Nanowire Sensors. Journal of Nanomaterials, 2015, 2015, 1-20.	2.7	10
182	Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. Advanced Materials, 2015, 27, 2324-2331.	21.0	468
183	Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy, 2015, 14, 364-371.	16.0	92
184	Mechanically Induced Light Emission and Infrared-Laser-Induced Upconversion in the Er-Doped CaZnOS Multifunctional Piezoelectric Semiconductor for Optical Pressure and Temperature Sensing. Journal of Physical Chemistry C, 2015, 119, 28136-28142.	3.1	123
185	Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors. Nano Energy, 2015, 12, 588-596.	16.0	74
186	Piezoâ€Phototronic UV/Visible Photosensing with Opticalâ€Fiber–Nanowire Hybridized Structures. Advanced Materials, 2015, 27, 1553-1560.	21.0	60
187	Carbon Nanotube Reinforced CdSe Inverse Opal with Crackâ€Free Structure and High Conductivity for Photovoltaic Applications. Advanced Materials Interfaces, 2015, 2, 1400464.	3.7	12
188	Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1–x Ge x alloy heterojunction. Nano Research, 2015, 8, 2676-2685.	10.4	16
189	Flexible and Controllable Piezoâ€Phototronic Pressure Mapping Sensor Matrix by ZnO NW/pâ€Polymer LED Array. Advanced Functional Materials, 2015, 25, 2884-2891.	14.9	200
190	Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors. Nano Energy, 2015, 14, 312-339.	16.0	71
191	CoS NWs/Au Hybridized Networks as Efficient Counter Electrodes for Flexible Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1500141.	19.5	46
192	Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6, 8401.	12.8	261
193	Highly flexible, conductive and catalytic Pt networks as transparent counter electrodes for wearable dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 23028-23034.	10.3	47
194	A self-powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention. Journal of Materials Chemistry A, 2015, 3, 22663-22668.	10.3	70
195	Adjusting the Layer Charges of Host Phyllosilicates To Prevent Luminescence Quenching of Fluorescence Dyes. Journal of Physical Chemistry C, 2015, 119, 22625-22631.	3.1	14
196	Development and progress in piezotronics. Nano Energy, 2015, 14, 276-295.	16.0	84
197	Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: A highly efficient photoelectrocatalytic device entirely based on renewable energy. Nano Energy, 2015, 11, 19-27.	16.0	107
198	Mapping strain/pressure with nanowire light- emitting-diode arrays by piezo-phototronic effect. , 2015,		0

#	Article	IF	CITATIONS
199	Optimizing Performance of Silicon-Based p–n Junction Photodetectors by the Piezo-Phototronic Effect. ACS Nano, 2014, 8, 12866-12873.	14.6	120
200	Electrochemical Cathodic Protection Powered by Triboelectric Nanogenerator. Advanced Functional Materials, 2014, 24, 6691-6699.	14.9	104
201	A Three Dimensional Multi‣ayered Sliding Triboelectric Nanogenerator. Advanced Energy Materials, 2014, 4, 1301592.	19.5	106
202	Triboelectric Nanogenerators as a Selfâ€₽owered Motion Tracking System. Advanced Functional Materials, 2014, 24, 5059-5066.	14.9	83
203	Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires. Physical Chemistry Chemical Physics, 2014, 16, 2790.	2.8	28
204	Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Research, 2014, 7, 1083-1091.	10.4	81
205	Flexible quantum dot-sensitized solar cells employing CoS nanorod arrays/graphite paper as effective counter electrodes. Journal of Materials Chemistry A, 2014, 2, 13661.	10.3	80
206	High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photonics, 2013, 7, 752-758.	31.4	641
207	Piezotronic Effect on the Sensitivity and Signal Level of Schottky Contacted Proactive Micro/Nanowire Nanosensors. ACS Nano, 2013, 7, 1803-1810.	14.6	100
208	Piezotronics and piezo-phototronics – From single nanodevices to array of devices and then to integrated functional system. Nano Today, 2013, 8, 619-642.	11.9	141
209	High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy and Environmental Science, 2013, 6, 494.	30.8	108
210	In Situ Quantitative Study of Nanoscale Triboelectrification and Patterning. Nano Letters, 2013, 13, 2771-2776.	9.1	210
211	Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Letters, 2013, 13, 2282-2289.	9.1	442
212	Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Letters, 2013, 13, 847-853.	9.1	979
213	Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects. Nano Research, 2013, 6, 758-766.	10.4	42
214	Largely Enhanced Efficiency in ZnO Nanowire/p-Polymer Hybridized Inorganic/Organic Ultraviolet Light-Emitting Diode by Piezo-Phototronic Effect. Nano Letters, 2013, 13, 607-613.	9.1	209
215	Enhanced Performance of a ZnO Nanowireâ€Based Selfâ€Powered Glucose Sensor by Piezotronic Effect. Advanced Functional Materials, 2013, 23, 5868-5874.	14.9	174
216	Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect. , 2013, , .		0

#	Article	IF	CITATIONS
217	Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Letters, 2012, 12, 4960-4965.	9.1	874
218	Progress in nanogenerators for portable electronics. Materials Today, 2012, 15, 532-543.	14.2	417
219	Optical-fiber/TiO2-nanowire-arrays hybrid structures with tubular counterelectrode for dye-sensitized solar cell. Nano Energy, 2012, 1, 176-182.	16.0	58
220	Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems. Nano Energy, 2012, 1, 259-272.	16.0	97
221	Piezoâ€Phototronic Effect of CdSe Nanowires. Advanced Materials, 2012, 24, 5470-5475.	21.0	77
222	Rectangular Bunched Rutile TiO ₂ Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2012, 134, 4437-4441.	13.7	349
223	Vertically Aligned CdSe Nanowire Arrays for Energy Harvesting and Piezotronic Devices. ACS Nano, 2012, 6, 6478-6482.	14.6	91
224	Enhanced Cu ₂ S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect. Nano Letters, 2012, 12, 3302-3307.	9.1	174
225	Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics. Advanced Materials, 2012, 24, 3532-3537.	21.0	114
226	Optical Fiberâ€Based Core–Shell Coaxially Structured Hybrid Cells for Selfâ€Powered Nanosystems. Advanced Materials, 2012, 24, 3356-3361.	21.0	80
227	Wafer-Scale High-Throughput Ordered Arrays of Si and Coaxial Si/Si _{1–<i>x</i>} Ge _{<i>x</i>} Wires: Fabrication, Characterization, and Photovoltaic Application. ACS Nano, 2011, 5, 6629-6636.	14.6	67
228	Impact of Pb Doping on the Optical and Electrical Properties of ZnO Nanowires. Journal of Nanoscience and Nanotechnology, 2011, 11, 1950-1957.	0.9	5
229	From proton conductive nanowires to nanofuel cells: A powerful candidate for generating electricity for self-powered nanosystems. Nano Research, 2011, 4, 1099-1109.	10.4	9
230	Fiberâ€Based Hybrid Nanogenerators for/as Selfâ€Powered Systems in Biological Liquid. Angewandte Chemie - International Edition, 2011, 50, 11192-11196.	13.8	92
231	Electron irradiation effect and photoluminescence properties of ZnO-tetrapod nanostructures. Materials Chemistry and Physics, 2010, 120, 319-322.	4.0	26
232	Generating Electricity from Biofluid with a Nanowireâ€Based Biofuel Cell for Selfâ€Powered Nanodevices. Advanced Materials, 2010, 22, 5388-5392.	21.0	99
233	Effect of Pb-doping on the morphology, structural and optical properties of ZnO nanowires synthesized via modified thermal evaporation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 55-58.	3.5	33
234	Controlled synthesis and methanol sensing capabilities of Pt-incorporated ZnO nanospheres. Electrochimica Acta, 2010, 55, 6885-6891.	5.2	22

#	Article	IF	CITATIONS
235	Ultrahigh secondary electron emission of carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	22
236	Investigation of Hydrogen Storage Capabilities of ZnO-Based Nanostructures. Journal of Physical Chemistry C, 2010, 114, 2560-2565.	3.1	75
237	Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-like ZnO Nanospheres. Journal of Physical Chemistry C, 2010, 114, 243-250.	3.1	131
238	A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor. Journal of Physical Chemistry C, 2010, 114, 9308-9313.	3.1	213
239	Electrochemical determination of l-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. Journal of Materials Chemistry, 2010, 20, 7169.	6.7	79
240	Ordered arrays of high-quality single-crystalline α-Si3N4 nanowires: Synthesis, properties and applications. Journal of Crystal Growth, 2009, 311, 4486-4490.	1.5	24
241	One-step synthesis route of the aligned and non-aligned single crystalline α-Si3N4 nanowires. Science in China Series D: Earth Sciences, 2009, 52, 1-5.	0.9	12
242	Bulk synthesis route of the oriented arrays of tip-shape ZnO nanowires and an investigation of their sensing capabilities. Chemical Physics Letters, 2009, 480, 105-109.	2.6	24
243	The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires. Journal of Materials Chemistry, 2009, 19, 869.	6.7	50
244	Effect of anneal pre-treatment of polycrystalline aluminum sheets on synthesis of highly-ordered anodic aluminum oxide membranes. Science in China Series D: Earth Sciences, 2008, 51, 1838-1842.	0.9	2
245	Nanowireâ€Based Highâ€Performance "Micro Fuel Cellsâ€: One Nanowire, One Fuel Cell. Advanced Materials, 2008, 20, 1644-1648.	21.0	126
246	Capping Modes in PVP-Directed Silver Nanocrystal Growth: Multi-Twinned Nanorods versus Single-Crystalline Nano-Hexapods. Crystal Growth and Design, 2008, 8, 1916-1923.	3.0	53
247	Surface decoration of anodic aluminium oxide in synthesis of Nafion®-115 nanowire arrays. Nanotechnology, 2007, 18, 015302.	2.6	12
248	Nano-porous anodic aluminium oxide membranes with 6–19 nm pore diameters formed by a low-potential anodizing process. Nanotechnology, 2007, 18, 345302.	2.6	44
249	Synthesis and characterization of NafionÂ $^{ extsf{@-115}}$ nanowire arrays. Nanotechnology, 2005, 16, 2242-2244.	2.6	22