Divina A Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6353519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Humic Acid-Induced Silver Nanoparticle Formation Under Environmentally Relevant Conditions. Environmental Science & Technology, 2011, 45, 3895-3901.	10.0	265
2	Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides. Chemistry Central Journal, 2014, 8, 5.	2.6	174
3	Influences of Chemical Properties, Soil Properties, and Solution pH on Soil–Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environmental Science & Technology, 2020, 54, 15883-15892.	10.0	171
4	Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. Journal of Hazardous Materials, 2012, 211-212, 427-435.	12.4	134
5	Ecological Risk Assessment of Nano-enabled Pesticides: A Perspective on Problem Formulation. Journal of Agricultural and Food Chemistry, 2018, 66, 6480-6486.	5.2	106
6	Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. Journal of Hazardous Materials, 2015, 300, 788-795.	12.4	98
7	Sorption of PFOA onto different laboratory materials: Filter membranes and centrifuge tubes. Chemosphere, 2019, 222, 671-678.	8.2	91
8	Natural Organic Matter-Mediated Phase Transfer of Quantum Dots in the Aquatic Environment. Environmental Science & Technology, 2009, 43, 677-682.	10.0	62
9	Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces. Science of the Total Environment, 2022, 817, 152975.	8.0	60
10	Cd Tolerance and Accumulation in the Aquatic Macrophyte, <i>Chara australis</i> : Potential Use for Charophytes in Phytoremediation. Environmental Science & Technology, 2011, 45, 5332-5338.	10.0	52
11	Sorptive remediation of perfluorooctanoic acid (PFOA) using mixed mineral and graphene/carbon-based materials. Environmental Chemistry, 2018, 15, 472.	1.5	44
12	Quantifying the Sensitivity of Soil Microbial Communities to Silver Sulfide Nanoparticles Using Metagenome Sequencing. PLoS ONE, 2016, 11, e0161979.	2.5	41
13	Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. Environmental Chemistry, 2019, 16, 401.	1.5	37
14	Remobilisation of silver and silver sulphide nanoparticles in soils. Environmental Pollution, 2014, 193, 102-110.	7.5	36
15	Characterization and ecological risk assessment of nanoparticulate CeO ₂ as a diesel fuel catalyst. Environmental Toxicology and Chemistry, 2013, 32, 1896-1905.	4.3	35
16	Predicting partitioning of radiolabelled 14C-PFOA in a range of soils using diffuse reflectance infrared spectroscopy. Science of the Total Environment, 2019, 686, 505-513.	8.0	35
17	Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA. Ecotoxicology and Environmental Safety, 2013, 98, 236-243.	6.0	33
18	Differences in Soil Mobility and Degradability between Water-Dispersible CdSe and CdSe/ZnS Quantum Dots. Environmental Science & Technology, 2011, 45, 6343-6349.	10.0	31

DIVINA A NAVARRO

#	ARTICLE	IF	CITATIONS
19	Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) as affected by the properties of coastal estuarine sediments. Science of the Total Environment, 2020, 720, 137263.	8.0	28
20	Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: Influence of capping-group functionality on the phase-transfer mechanism. Journal of Colloid and Interface Science, 2010, 348, 119-128.	9.4	27
21	Behaviour of fullerenes (C60) in the terrestrial environment: Potential release from biosolids-amended soils. Journal of Hazardous Materials, 2013, 262, 496-503.	12.4	27
22	Comparing the Leaching Behavior of Per- and Polyfluoroalkyl Substances from Contaminated Soils Using Static and Column Leaching Tests. Environmental Science & Technology, 2022, 56, 368-378.	10.0	24
23	An investigation into the long-term binding and uptake of PFOS, PFOA and PFHxS in soil – plant systems. Journal of Hazardous Materials, 2021, 404, 124065.	12.4	22
24	Fullerol as a Potential Pathway for Mineralization of Fullerene Nanoparticles in Biosolid-Amended Soils. Environmental Science and Technology Letters, 2016, 3, 7-12.	8.7	19
25	Mineralisation and release of 14C-graphene oxide (GO) in soils. Chemosphere, 2020, 238, 124558.	8.2	15
26	Assessment of Mobilization Potential of Per- and Polyfluoroalkyl Substances for Soil Remediation. Environmental Science & Technology, 2022, 56, 10030-10041.	10.0	12
27	Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and HfxZr1â^'xO2 nanoparticles with natural organic matter reveal differences dependent on crystal structure. Journal of Hazardous Materials, 2011, 196, 302-310.	12.4	9
28	Fate of radiolabeled C60 fullerenes in aged soils. Environmental Pollution, 2017, 221, 293-300.	7.5	9
29	Organic carbon and salinity affect desorption of PFAS from estuarine sediments. Journal of Soils and Sediments, 2022, 22, 1302-1314.	3.0	5
30	Method for extraction and analysis of per- and poly-fluoroalkyl substances in contaminated asphalt. Analytical Methods, 2022, 14, 1678-1689.	2.7	5
31	Mixedâ€Mode Remediation of Cadmium and Arsenate Ions Using Grapheneâ€Based Materials. Clean - Soil, Air, Water, 2018, 46, 1800073.	1.1	3
32	Potential Application of Laserâ€Induced Breakdown Spectroscopy (LIBS) Data for the Determination of Cation Exchange Capacity (CEC) of Agricultural Soils. ChemistrySelect, 2020, 5, 3798-3804.	1.5	3
33	Fate of copper in soil: effect of agrochemical (nano)formulations and soil properties. Environmental Science: Nano, 0, , .	4.3	2