
Ruth A Hufbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6352872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	6.4	649
2	Enantiomeric-Dependent Phytotoxic and Antimicrobial Activity of (±)-Catechin. A Rhizosecreted Racemic Mixture from Spotted Knapweed. Plant Physiology, 2002, 128, 1173-1179.	4.8	240
3	Is There a Genetic Paradox of Biological Invasion?. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 51-72.	8.3	225
4	Do invasive species perform better in their new ranges?. Ecology, 2013, 94, 985-994.	3.2	210
5	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	3.2	208
6	Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to humanâ€eltered habitats within the native range can promote invasions. Evolutionary Applications, 2012, 5, 89-101.	3.1	205
7	Inbreeding Depression Is Purged in the Invasive Insect Harmonia axyridis. Current Biology, 2011, 21, 424-427.	3.9	174
8	Indirect effects of parasites in invasions. Functional Ecology, 2012, 26, 1262-1274.	3.6	172
9	Microevolution in biological control: Mechanisms, patterns, and processes. Biological Control, 2005, 35, 227-239.	3.0	164
10	The biology of small, introduced populations, with special reference to biological control. Evolutionary Applications, 2012, 5, 424-443.	3.1	141
11	Three types of rescue can avert extinction in a changing environment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10557-10562.	7.1	138
12	Deciphering the routes of invasion of <i>Drosophila suzukii</i> by means of ABC random forest. Molecular Biology and Evolution, 2017, 34, msx050.	8.9	132
13	Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytologist, 2008, 178, 412-423.	7.3	130
14	Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13501-13506.	7.1	121
15	A Lack of Evidence for an Ecological Role of the Putative Allelochemical (±)-Catechin in Spotted Knapweed Invasion Success. Journal of Chemical Ecology, 2006, 32, 2327-2331.	1.8	119
16	Applying molecular-based approaches to classical biological control of weeds. Biological Control, 2011, 58, 1-21.	3.0	114
17	The population genetics of a biological control introduction: mitochondrial DNA and microsatellie variation in native and introduced populations ofAphidus ervi, a parisitoid wasp. Molecular Ecology, 2004, 13, 337-348.	3.9	102
18	Role of propagule pressure in colonization success: disentangling the relative importance of demographic, genetic and habitat effects. Journal of Evolutionary Biology, 2013, 26, 1691-1699.	1.7	102

#	Article	IF	CITATIONS
19	Rapid trait evolution drives increased speed and variance in experimental range expansions. Nature Communications, 2017, 8, 14303.	12.8	101
20	INCREASED PLANT SIZE IN EXOTIC POPULATIONS: A COMMON-GARDEN TEST WITH 14 INVASIVE SPECIES. Ecology, 2007, 88, 2758-2765.	3.2	100
21	New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecology Letters, 2005, 8, 1039-1047.	6.4	96
22	Rapid evolution of an invasive weed. New Phytologist, 2014, 202, 309-321.	7.3	78
23	EVOLUTION OF AN APHIDâ€PARASITOID INTERACTION: VARIATION IN RESISTANCE TO PARASITISM AMONG APHID POPULATIONS SPECIALIZED ON DIFFERENT PLANTS. Evolution; International Journal of Organic Evolution, 1999, 53, 1435-1445.	2.3	77
24	The roles of demography and genetics in the early stages of colonization. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141073.	2.6	76
25	When invasion increases population genetic structure: a study with Centaurea diffusa. Biological Invasions, 2008, 10, 561-572.	2.4	71
26	Evidence for multiple introductions of <i>Centaurea stoebe micranthos</i> (spotted knapweed,) Tj ETQq0 0 0 rg	ζΒΤ ₃ /9verl∕	ock 10 Tf 50
27	Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160043.	4.0	62
28	EVIDENCE FOR NONADAPTIVE EVOLUTION IN PARASITOID VIRULENCE FOLLOWING A BIOLOGICAL CONTROL INTRODUCTION. , 2002, 12, 66-78.		60
29	Hybridization and invasion: one of North America's most devastating invasive plants shows evidence for a history of interspecific hybridization. Evolutionary Applications, 2010, 3, 40-51.	3.1	57
30	Genetic and demographic founder effects have longâ€ŧerm fitness consequences for colonising populations. Ecology Letters, 2017, 20, 436-444.	6.4	56
31	Global Invader Impact Network (<scp>GIIN</scp>): toward standardized evaluation of the ecological impacts of invasive plants. Ecology and Evolution, 2015, 5, 2878-2889.	1.9	54
32	Evolution and biological control. Evolutionary Applications, 2012, 5, 419-423.	3.1	53
33	How Evolution Modifies the Variability of Range Expansion. Trends in Ecology and Evolution, 2019, 34, 903-913.	8.7	53
34	Multiple introductions of two invasive <i>Centaurea</i> taxa inferred from cpDNA haplotypes. Diversity and Distributions, 2008, 14, 252-261.	4.1	49
35	Evolution of fastâ€growing and more resistant phenotypes in introduced common mullein (<i>Verbascum thapsus</i>). Journal of Ecology, 2013, 101, 378-387.	4.0	46
36	Biological invasion and biological control select for different life histories. Nature Communications, 2015, 6, 7268.	12.8	43

#	Article	IF	CITATIONS
37	Oviposition Preference and Larval Performance of Drosophila suzukii (Diptera: Drosophilidae), Spotted-Wing Drosophila: Effects of Fruit Identity and Composition. Environmental Entomology, 2019, 48, 867-881.	1.4	43
38	Ecoâ€evolutionary responses of <i><scp>B</scp>romus tectorum</i> to climate change: implications for biological invasions. Ecology and Evolution, 2013, 3, 1374-1387.	1.9	41
39	INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species. Management of Biological Invasions, 2016, 7, 131-139.	1.2	41
40	The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biological Invasions, 2009, 11, 325-332.	2.4	38
41	Pea Aphid-Parasitoid Interactions: Have Parasitoids Adapted to Differential Resistance?. Ecology, 2001, 82, 717.	3.2	36
42	Evolution of an Aphid-Parasitoid Interaction: Variation in Resistance to Parasitism among Aphid Populations Specialized on Different Plants. Evolution; International Journal of Organic Evolution, 1999, 53, 1435.	2.3	34
43	Integrating Ecological and Evolutionary Theory of Biological Invasions. , 2008, , 79-96.		33
44	The implications of rapid ecoâ€evolutionary processes for biological control ―a review. Entomologia Experimentalis Et Applicata, 2019, 167, 598-615.	1.4	32
45	Interactive Effects of Different Types of Herbivore Damage: Trirhabda beetle Larvae and Philaenus spittlebugs on Goldenrod (Solidago altissima). American Midland Naturalist, 2002, 147, 204-213.	0.4	30
46	Biological Invasions: Paradox Lost and Paradise Gained. Current Biology, 2008, 18, R246-R247.	3.9	30
47	Prior adaptation, diversity, and introduction frequency mediate the positive relationship between propagule pressure and the initial success of founding populations. Biological Invasions, 2018, 20, 2451-2459.	2.4	28
48	Evolutionary history predicts highâ€impact invasions by herbivorous insects. Ecology and Evolution, 2019, 9, 12216-12230.	1.9	28
49	Frequent sexual reproduction and high intraspecific variation in <i>Salix arctica</i> : Implications for a terrestrial feedback to climate change in the High Arctic. Journal of Geophysical Research, 2008, 113, .	3.3	27
50	Evolution of growth but not structural or chemical defense in Verbascum thapsus (common mullein) following introduction to North America. Biological Invasions, 2011, 13, 2379-2389.	2.4	27
51	Exploring the potential for climatic factors, herbivory, and co-occurring vegetation to shape performance in native and introduced populations of Verbascum thapsus. Biological Invasions, 2012, 14, 2505-2518.	2.4	26
52	Combining optimal defense theory and the evolutionary dilemma model to refine predictions regarding plant invasion. Ecology, 2012, 93, 1912-1921.	3.2	26
53	The power of evolutionary rescue is constrained by genetic load. Evolutionary Applications, 2017, 10, 731-741.	3.1	26
54	Population Genetics of Invasions: Can We Link Neutral Markers to Management? ¹ . Weed Technology, 2004, 18, 1522-1527.	0.9	24

#	Article	IF	CITATIONS
55	The case against (–)-catechin involvement in allelopathy of <i>Centaurea stoebe</i> (spotted) Tj ETQq1 1 0.78	4314 rgBT 2.4	/Overlock 1
56	Enumerating lepidopteran species associated with maize as a first step in risk assessment in the USA. Environmental Biosafety Research, 2003, 2, 247-261.	1.1	20
57	Pre- and post-introduction patterns in neutral genetic diversity in the leafy spurge gall midge, Spurgia capitigena (Bremi) (Diptera: Cecidomyiidae). Biological Control, 2005, 33, 153-164.	3.0	20
58	High Phenotypic and Molecular Variation in Downy Brome (Bromus tectorum). Invasive Plant Science and Management, 2008, 1, 216-225.	1.1	20
59	Weak or strong invaders? A comparison of impact between the native and invaded ranges of mammals and birds alien to Europe. Diversity and Distributions, 2011, 17, 663-672.	4.1	20
60	Hybridization affects life-history traits and host specificity in Diorhabda spp Biological Control, 2017, 111, 45-52.	3.0	20
61	Effects of Corn Plants and Corn Pollen on Monarch Butterfly (Lepidoptera: Danaidae) Oviposition Behavior. Environmental Entomology, 2001, 30, 495-500.	1.4	19
62	Nine polymorphic microsatellite markers in Centaurea stoebe L. [subspecies C. s. stoebe and C. s. micranthos (S. G. Gmelin ex Gugler) Hayek] and C. diffusa Lam. (Asteraceae). Molecular Ecology Notes, 2006, 6, 897-899.	1.7	19
63	The importance of growing up: juvenile environment influences dispersal of individuals and their neighbours. Ecology Letters, 2019, 22, 45-55.	6.4	19
64	The Global Garlic Mustard Field Survey (GGMFS): challenges and opportunities of a unique, large-scale collaboration for invasion biology. NeoBiota, 0, 21, 29-47.	1.0	19
65	The benefits of pre-release population genetics: A case study using Ceutorhynchus scrobicollis, a candidate agent of garlic mustard, Alliaria petiolata. Biological Control, 2011, 56, 67-75.	3.0	18
66	Into the weeds: Matching importation history to genetic consequences and pathways in two widely used biological control agents. Evolutionary Applications, 2019, 12, 773-790.	3.1	18
67	Investigating the genetic load of an emblematic invasive species: the case of the invasive harlequin ladybird <i>Harmonia axyridis</i> . Ecology and Evolution, 2013, 3, 864-871.	1.9	17
68	Aphid population dynamics: does resistance to parasitism influence population size?. Ecological Entomology, 2002, 27, 25-32.	2.2	16
69	Assessing Genetic Diversity of Canada Thistle (<i>Cirsium arvense</i>) in North America with Microsatellites. Weed Science, 2010, 58, 387-394.	1.5	15
70	Hybridization and invasion: an experimental test with diffuse knapweed (<i>Centaurea diffusa</i>) Tj ETQq0 0 C	rgBT/Ove	rlock 10 Tf 5
71	Isolation and characterization of microsatellites in Aphidius ervi (Hymenoptera: Braconidae) and their applicability to related species. Molecular Ecology Notes, 2001, 1, 197-199.	1.7	14
72	Chemical and Mechanical Defenses Vary among Maternal Lines and Leaf Ages in Verbascum thapsus L.	2.5	14

Chemical and Mechanical Defenses Vary among Maternal Lines and Leaf Ages in Verbascum thap (Scrophulariaceae) and Reduce Palatability to a Generalist Insect. PLoS ONE, 2014, 9, e104889.

#	Article	IF	CITATIONS
73	How do biological control and hybridization affect enemy escape?. Biological Control, 2008, 46, 358-370.	3.0	13
74	Breakdown of a geographic cline explains high performance of introduced populations of a weedy invader. Journal of Ecology, 2018, 106, 699-713.	4.0	13
75	Parsing propagule pressure: Number, not size, of introductions drives colonization success in a novel environment. Ecology and Evolution, 2018, 8, 8043-8054.	1.9	13
76	Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time. PLoS ONE, 2015, 10, e0140682.	2.5	13
77	PEA APHID–PARASITOID INTERACTIONS: HAVE PARASITOIDSADAPTED TO DIFFERENTIAL RESISTANCE?. Ecology, 2001, 82, 717-725.	3.2	11
78	The effects of agent hybridization on the efficacy of biological control of tansy ragwort at high elevations. Evolutionary Applications, 2019, 12, 470-481.	3.1	11
79	Genetic traits leading to invasion: plasticity in cold hardiness explains current distribution of an invasive agricultural pest, Tetranychus evansi (Acari: Tetranychidae). Biological Invasions, 2015, 17, 2275-2285.	2.4	10
80	Admixture is a driver rather than a passenger in experimental invasions. Journal of Animal Ecology, 2017, 86, 4-6.	2.8	10
81	Mating Status Influences Cold Tolerance and Subsequent Reproduction in the Invasive Ladybird Harmonia axyridis. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	10
82	Host-plant preference of Brachypterolus pulicarius, an inadvertently introduced biological control insect of toadflaxes. Entomologia Experimentalis Et Applicata, 2005, 116, 183-189.	1.4	8
83	Microsatellite Markers for Russian Olive (Elaeagnus angustifolia; Elaeagnaceae). Applications in Plant Sciences, 2013, 1, 1300013.	2.1	8
84	Russian-olive (Elaeagnus angustifolia) genetic diversity in the western United States and implications for biological control. Invasive Plant Science and Management, 2019, 12, 89-96.	1.1	8
85	Stochastic processes drive rapid genomic divergence during experimental range expansions. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190231.	2.6	8
86	Adaptation and correlated fitness responses over two time scales in <i>Drosophila suzukii</i> populations evolving in different environments. Journal of Evolutionary Biology, 2021, 34, 1225-1240.	1.7	8
87	The roles of phenotypic plasticity and adaptation in morphology and performance of an invasive species in a novel environment. Ecological Entomology, 2022, 47, 25-37.	2.2	8
88	PCR–RFLP assays for discerning three weevil stem feeders (Ceutorhynchusspp.) (Col.: Curculionidae) on garlic mustard (Alliaria petiolata). Biocontrol Science and Technology, 2009, 19, 999-1005.	1.3	7
89	Geographic Patterns of Interspecific Hybridization between Spotted Knapweed (Centaurea stoebe) and Diffuse Knapweed (C. diffusa). Invasive Plant Science and Management, 2009, 2, 55-69.	1.1	7
90	The impact is in the details: evaluating a standardized protocol and scale for determining non-native insect impact. NeoBiota, 0, 55, 61-83.	1.0	7

Ruth A Hufbauer

#	Article	IF	CITATIONS
91	Hybridization and range expansion in tamarisk beetles (<i>Diorhabda</i> spp.) introduced to North America for classical biological control. Evolutionary Applications, 2022, 15, 60-77.	3.1	6
92	Predicting non-native insect impact: focusing on the trees to see the forest. Biological Invasions, 2021, 23, 3921-3936.	2.4	5
93	The effect of insect herbivory on the growth and fitness of introduced Verbascum thapsus L. NeoBiota, 0, 19, 21-44.	1.0	5
94	Microsatellite isolation from the gall midge Spurgia capitigena (Diptera: Cecidomyiidae), a biological control agent of leafy spurge. Molecular Ecology Notes, 2004, 4, 605-607.	1.7	3
95	Introduced North American Black Henbane (<i>Hyoscyamus niger</i>) Populations are Biennial. Invasive Plant Science and Management, 2014, 7, 624-630.	1.1	3
96	Biological invasions and the homogenization of life on Earth. Current Biology, 2018, 28, R808-R810.	3.9	3
97	Evaluating host use of an accidentally introduced herbivore on two invasive toadflaxes. Biological Control, 2007, 41, 184-189.	3.0	2
98	Timing Control Efforts to Limit Seed Set of Common Mullein (<i>Verbascum thapsus</i>). Invasive Plant Science and Management, 2012, 5, 390-394.	1.1	2
99	Reply to Wootton and Pfister: The search for general context should include synthesis with laboratory model systems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5904-E5904.	7.1	2
100	Reproductive Strategy, Performance, and Population Dynamics of the Introduced Weed Black Henbane (Hyoscyamus niger). Weed Science, 2017, 65, 83-96.	1.5	2
101	One genotype dominates a facultatively outcrossing plant invasion. Biological Invasions, 2021, 23, 1901-1914.	2.4	2
102	Tree diversity is associated with reduced herbivory in urban forest. Peer Community in Ecology, 0, , .	0.0	2
103	Potential impact and phenology of the biological control agent, <i>Hypena opulenta</i> on <i>Vincetoxicum nigrum</i> in Michigan. Biocontrol Science and Technology, 2022, 32, 671-684.	1.3	2
104	Increasing temporal variance leads to stable species range limits. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220202.	2.6	2
105	Using biological invasions to improve plant defense theory. Entomologia Experimentalis Et Applicata, 0, , .	1.4	2
106	How do invasion syndromes evolve? An experimental evolution approach using the ladybird Harmonia axyridis. , 0, 1, .		1
107	Ruth Hufbauer. Current Biology, 2020, 30, R1242-R1243.	3.9	0
108	Impacts of genetically engineered crops on non-target herbivores. , 2001, , 143-165.		0

#	Article	IF	CITATIONS
109	A survey of the hymenopteran parasitoid complex of Dalmatian toadflax weevils in Colorado. Biocontrol Science and Technology, 0, , 1-7.	1.3	0