
Guillermo Montoya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6352551/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase. Molecular Cell, 2016, 63, 686-695.	9.7	235
2	Engineering of Large Numbers of Highly Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets. Journal of Molecular Biology, 2006, 355, 443-458.	4.2	175
3	Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature, 2017, 546, 559-563.	27.8	170
4	Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity. Cell, 2018, 175, 1856-1871.e21.	28.9	167
5	CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 2020, 43, 8-17.	3.1	151
6	Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature, 2008, 456, 107-111.	27.8	150
7	Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Research, 2009, 37, 5405-5419.	14.5	146
8	Chaperonins: two rings for folding. Trends in Biochemical Sciences, 2011, 36, 424-432.	7.5	140
9	Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nature Structural and Molecular Biology, 2011, 18, 14-19.	8.2	128
10	High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Cell Reports, 2019, 26, 3741-3751.e5.	6.4	102
11	Homing endonucleases: from basics to therapeutic applications. Cellular and Molecular Life Sciences, 2010, 67, 727-748.	5.4	73
12	Structure of Csx1-cOA4 complex reveals the basis of RNA decay in Type III-B CRISPR-Cas. Nature Communications, 2019, 10, 4302.	12.8	72
13	TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress. Journal of Cell Biology, 2016, 212, 63-75.	5.2	65
14	Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell, 2019, 179, 543-560.e26.	28.9	65
15	Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Research, 2011, 39, 729-743.	14.5	63
16	A Consensus Binding Motif for the PP4 Protein Phosphatase. Molecular Cell, 2019, 76, 953-964.e6.	9.7	59
17	Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nature Structural and Molecular Biology, 2017, 24, 882-892.	8.2	55
18	The genome editing revolution: A <scp>CRISPR as TALE</scp> offâ€ŧarget story. BioEssays, 2016, 38, S4-S13.	2.5	51

Guillermo Montoya

#	Article	IF	CITATIONS
19	A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Nucleic Acids Research, 2018, 46, 10319-10330.	14.5	51
20	DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. ELife, 2020, 9, .	6.0	47
21	Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Research, 2017, 45, 10740-10750.	14.5	43
22	Structures of the Cmr-β Complex Reveal the Regulation of the Immunity Mechanism of Type III-B CRISPR-Cas. Molecular Cell, 2020, 79, 741-757.e7.	9.7	43
23	Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Current Opinion in Structural Biology, 2020, 65, 119-129.	5.7	42
24	Crystal structure of I-Dmol in complex with its target DNA provides new insights into meganuclease engineering. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16888-16893.	7.1	36
25	Visualizing phosphodiester-bond hydrolysis by an endonuclease. Nature Structural and Molecular Biology, 2015, 22, 65-72.	8.2	30
26	Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1707-1716.	2.5	28
27	A PTIP–PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex. Genes and Development, 2016, 30, 149-163.	5.9	27
28	The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage. Nucleic Acids Research, 2007, 35, 3262-3271.	14.5	25
29	Non-specific protein–DNA interactions control I-CreI target binding and cleavage. Nucleic Acids Research, 2012, 40, 6936-6945.	14.5	24
30	BuD, a helix–loop–helix DNA-binding domain for genome modification. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2042-2052.	2.5	24
31	Molecular basis of Tousled-Like Kinase 2 activation. Nature Communications, 2018, 9, 2535.	12.8	24
32	Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nature Communications, 2021, 12, 4476.	12.8	23
33	Molecular architecture of a multifunctional MCM complex. Nucleic Acids Research, 2012, 40, 1366-1380.	14.5	22
34	The TRiC/CCT Chaperonin and Its Role in Uncontrolled Proliferation. Advances in Experimental Medicine and Biology, 2020, 1243, 21-40.	1.6	21
35	XTACC3–XMAP215 association reveals an asymmetric interaction promoting microtubule elongation. Nature Communications, 2014, 5, 5072.	12.8	19
36	Generation and Analysis of Mesophilic Variants of the Thermostable Archaeal I-Dmol Homing Endonuclease. Journal of Biological Chemistry, 2008, 283, 4364-4374.	3.4	17

Guillermo Montoya

#	Article	IF	CITATIONS
37	Molecular scissors for <i>in situ</i> cellular repair. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 207-221.	5.2	16
38	Molecular architecture of the Jumonji C family histone demethylase KDM5B. Scientific Reports, 2019, 9, 4019.	3.3	16
39	Chemogenetic profiling reveals PP2Aâ€independent cytotoxicity of proposed PP2A activators iHAP1 and DTâ€061. EMBO Journal, 2022, 41, .	7.8	14
40	Mechanics of CRISPR-Cas12a and engineered variants on λ-DNA. Nucleic Acids Research, 2022, 50, 5208-5225.	14.5	13
41	A novel TPR–BEN domain interaction mediates PICH–BEND3 association. Nucleic Acids Research, 2017, 45, 11413-11424.	14.5	12
42	Understanding the indirect DNA read-out specificity of I-Crel Meganuclease. Scientific Reports, 2018, 8, 10286.	3.3	12
43	Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases. Nucleic Acids Research, 2021, 49, 12577-12590.	14.5	10
44	Key Players in I-Dmol Endonuclease Catalysis Revealed from Structure and Dynamics. ACS Chemical Biology, 2016, 11, 1401-1407.	3.4	9
45	A highly conserved pocket on PP2Aâ€B56 is required for hSgo1 binding and cohesion protection during mitosis. EMBO Reports, 2021, 22, e52295.	4.5	9
46	Molecular architecture of the recombinant human MCM2-7 helicase in complex with nucleotides and DNA. Cell Cycle, 2016, 15, 2431-2440.	2.6	8
47	Engineering a Nickase on the Homing Endonuclease I-Dmol Scaffold. Journal of Biological Chemistry, 2015, 290, 18534-18544.	3.4	7
48	Molecular Basis of the Mechanisms Controlling MASTL. Molecular and Cellular Proteomics, 2020, 19, 326-343.	3.8	7
49	Structure of the I-Scel nuclease complexed with its dsDNA target and three catalytic metal ions. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 473-479.	0.8	6
50	Assembly of <i>Francisella novicida</i> Cpf1 endonuclease in complex with guide RNA and target DNA. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 409-415.	0.8	6
51	Electron Microscopy Structural Insights into CPAP Oligomeric Behavior: A Plausible Assembly Process of a Supramolecular Scaffold of the Centrosome. Frontiers in Molecular Biosciences, 2017, 4, 17.	3.5	5
52	Characterization of the NTPR and BD1 interacting domains of the human PICH–BEND3 complex. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 646-651.	0.8	5
53	Identification and Optimization of Novel Small-Molecule Cas9 Inhibitors by Cell-Based High-Throughput Screening. Journal of Medicinal Chemistry, 2022, 65, 3266-3305.	6.4	5
54	Purification, crystallization and preliminary X-ray diffraction analysis of the kinase domain of human tousled-like kinase 2. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 354-357.	0.8	3

#	Article	IF	CITATIONS
55	Crystallization and preliminary X-ray diffraction analysis of the homing endonuclease I-Cvul fromChlorella vulgarisin complex with its target DNA. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 256-259.	0.8	2
56	Crystal Structure of the Homing Endonuclease I-Cvul Provides a New Template for Genome Modification. Journal of Biological Chemistry, 2015, 290, 28727-28736.	3.4	2
57	Structure and dynamics of mesophilic variants from the homing endonuclease I-Dmol. Journal of Computer-Aided Molecular Design, 2017, 31, 1063-1072.	2.9	2
58	The genome editing revolution: A CRISPR-Cas TALE off-target story. Inside the Cell, 2016, 1, 7-16.	0.4	0
59	Editorial overview: Protein–nucleic acid interactions: †Takes two to Tango'. Current Opinion in Structural Biology, 2020, 65, v-vi.	5.7	0