Yasumitsu Ogra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351972/publications.pdf Version: 2024-02-01

Υλοιιμιτου Οσαλ

#	Article	IF	CITATIONS
1	Band 3/anion exchanger 1/solute carrier family 4 member 1 expression as determinant of cellular sensitivity to selenite exposure. Biochemistry and Biophysics Reports, 2022, 29, 101223.	1.3	0
2	Post-mortem interaction between methidathion and human serum albumin in blood. Journal of Toxicological Sciences, 2022, 47, 139-146.	1.5	3
3	Recent advances in copper analyses by inorganic mass spectrometry. Journal of Clinical Biochemistry and Nutrition, 2022, 71, 2-6.	1.4	2
4	Evaluation of Post-Mortem Interaction between Hemoglobin and Oxime-Type Carbamate Pesticides. Chemical Research in Toxicology, 2022, 35, 1110-1116.	3.3	3
5	Detection of Histidine-Tagged Protein in <i>Escherichia coli</i> by Single-Cell Inductively Coupled Plasma-Mass Spectrometry. Analytical Chemistry, 2022, 94, 7952-7959.	6.5	5
6	Presence of nano-sized mercury-containing particles in seafoods, and an estimate of dietary exposure. Environmental Pollution, 2022, 307, 119555.	7.5	11
7	Systematic study of the selenium fractionation in human plasma from a cancer prevention trial using HPLC hyphenated to ICP-MS and ESI-MS/MS. Analytical and Bioanalytical Chemistry, 2021, 413, 331-344.	3.7	5
8	Effects of hemoglobin on post-mortem oxidation of bromazepam. Fundamental Toxicological Sciences, 2021, 8, 61-67.	0.6	4
9	Determination of spatial mercury concentration by laser ablation-inductively coupled plasma mass spectrometry. Journal of Toxicological Sciences, 2021, 46, 193-198.	1.5	5
10	Post-Mortem Changes of Methomyl in Blood with Hemoglobin. Chemical Research in Toxicology, 2021, 34, 161-168.	3.3	10
11	Hyperthermia Selectively Destabilizes Oncogenic Fusion Proteins. Blood Cancer Discovery, 2021, 2, 388-401.	5.0	26
12	Copper and zinc concentrations in the breast milk of mothers undergoing treatment for Wilson's disease: a prospective study. BMJ Paediatrics Open, 2021, 5, e000948.	1.4	10
13	Effects of human serum albumin on post-mortem changes of malathion. Scientific Reports, 2021, 11, 11573.	3.3	14
14	Evaluation of Dexamethasone-Induced Osteoporosis In Vivo Using Zebrafish Scales. Pharmaceuticals, 2021, 14, 536.	3.8	7
15	Nuclear translocation promotes proteasomal degradation of human Rad17 protein through the N-terminal destruction boxes. Journal of Biological Chemistry, 2021, 297, 100831.	3.4	3
16	Comparison of quantification of selenocyanate and thiocyanate in cultured mammalian cells between HPLC-fluorescence detector and HPLC-inductively coupled plasma mass spectrometer. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1181, 122924.	2.3	2
17	Distributions of mercury and selenium in rats ingesting mercury selenide nanoparticles. Ecotoxicology and Environmental Safety, 2021, 226, 112867.	6.0	10
18	Formation Mechanism and Toxicological Significance of Biogenic Mercury Selenide Nanoparticles in Human Hepatoma HepG2 Cells. Chemical Research in Toxicology, 2021, 34, 2471-2484.	3.3	11

#	Article	IF	CITATIONS
19	Identification of the biliary selenium metabolite and the biological significance of selenium enterohepatic circulation. Metallomics, 2020, 12, 241-248.	2.4	16
20	Elucidation of tellurium biogenic nanoparticles in garlic, Allium sativum, by inductively coupled plasma-mass spectrometry. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126628.	3.0	6
21	Quantitative Elemental Analysis of a Single Cell by Using Inductively Coupled Plasmaâ€Mass Spectrometry in Fast Timeâ€Resolved Analysis Mode. ChemBioChem, 2020, 21, 3266-3272.	2.6	17
22	A matricellular protein fibulin-4 is essential for the activation of lysyl oxidase. Science Advances, 2020, 6, .	10.3	28
23	Production of a Urinary Selenium Metabolite, Trimethylselenonium, by Thiopurine <i>S</i> -Methyltransferase and Indolethylamine <i>N</i> -Methyltransferase. Chemical Research in Toxicology, 2020, 33, 2467-2474.	3.3	16
24	Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation. Journal of Biological Chemistry, 2020, 295, 5669-5684.	3.4	18
25	Quantitative assessment of cellular uptake and differential toxic effects of HgSe nanoparticles in human cells. Journal of Analytical Atomic Spectrometry, 2020, 35, 1979-1988.	3.0	9
26	Effect of gut microflora on nutritional availability of selenium. Food Chemistry, 2020, 319, 126537.	8.2	31
27	<i>In vitro</i> toxicity studies of epoxyoleic acid and diepoxylinoleic acid. Fundamental Toxicological Sciences, 2020, 7, 123-132.	0.6	0
28	Role of Metallothionein in Transcriptional Regulation by Metal-Responsive Element-Binding Transcription Factor 1. BPB Reports, 2020, 3, 22-27.	0.3	1
29	Evaluation of copper metabolism in neonatal rats by speciation analysis using liquid chromatography hyphenated to ICP mass spectrometry. Metallomics, 2019, 11, 1679-1686.	2.4	10
30	Species difference in antimony and arsenic metabolism between hamster and rat after administration of tri- or pentavalent inorganic antimony. Fundamental Toxicological Sciences, 2019, 6, 181-185.	0.6	0
31	Changes in copper, zinc and cadmium distributions in the liver of Formosan squirrels with characteristic high copper accumulation. Metallomics, 2019, 11, 1753-1758.	2.4	3
32	Analytical methodology for the simultaneous determination of NMG-Sb(v), iSb(v), and iSb(iii) species by anion exchange liquid chromatography in Glucantime® and its biological application in Wistar rat urine. Journal of Analytical Atomic Spectrometry, 2019, 34, 203-213.	3.0	5
33	Improvement of the solubility and emulsifying properties of rice bran protein by phosphorylation with sodium trimetaphosphate. Food Hydrocolloids, 2019, 96, 288-299.	10.7	79
34	Evaluation of chemical species and bioaccessibility of selenium in dietary supplements. European Food Research and Technology, 2019, 245, 225-232.	3.3	4
35	Mutagenicity comparison of nine bioselenocompounds in three Salmonella typhimurium strains. Toxicology Reports, 2018, 5, 220-223.	3.3	1
36	Speciation of Selenium in Brown Rice Fertilized with Selenite and Effects of Selenium Fertilization on Rice Proteins. International Journal of Molecular Sciences, 2018, 19, 3494.	4.1	33

#	Article	IF	CITATIONS
37	Bioanalytical Chemistry of Selenium. Molecular and Integrative Toxicology, 2018, , 495-511.	0.5	0
38	Effect of administration route and dose on metabolism of nine bioselenocompounds. Journal of Trace Elements in Medicine and Biology, 2018, 49, 113-118.	3.0	17
39	Casein kinase 2 promotes interaction between Rad17 and the 9-1-1 complex through constitutive phosphorylation of the C-terminal tail of human Rad17. Biochemical and Biophysical Research Communications, 2018, 504, 380-386.	2.1	6
40	Biotransformation of organic selenium compounds in budding yeast, <i>Saccharomyces cerevisiae</i> . Metallomics, 2018, 10, 1257-1263.	2.4	11
41	Combretastatin A4-β-Galactosyl Conjugates for Ovarian Cancer Prodrug Monotherapy. ACS Medicinal Chemistry Letters, 2017, 8, 211-214.	2.8	27
42	Identification and determination of selenohomolanthionine – The major selenium compound in Torula yeast. Food Chemistry, 2017, 237, 1196-1201.	8.2	30
43	Biology and toxicology of tellurium explored by speciation analysis. Metallomics, 2017, 9, 435-441.	2.4	19
44	Preparation of envelope-type lipid nanoparticles containing gold nanorods for photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 715-723.	5.0	9
45	Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard. Metallomics, 2017, 9, 61-68.	2.4	23
46	Bioavailability Comparison of Nine Bioselenocompounds In Vitro and In Vivo. International Journal of Molecular Sciences, 2017, 18, 506.	4.1	60
47	77Se NMR Spectroscopy for Speciation Analysis of Selenium Compounds. , 2017, , 147-155.		3
48	Speciation and Identification of Chalcogen-Containing Metabolites. , 2017, , 43-61.		1
49	Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species. Journal of Toxicological Sciences, 2016, 41, 783-792.	1.5	18
50	Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons. Scientific Reports, 2016, 6, 33007.	3.3	30
51	Metallomics approach to changes in element concentration during differentiation from fibroblasts into adipocytes by element array analysis. Journal of Toxicological Sciences, 2016, 41, 241-244.	1.5	3
52	The scope of Metallomics. Metallomics, 2016, 8, 8-8.	2.4	1
53	Selenium Metabolism. Oxidative Stress and Disease, 2015, , 19-30.	0.3	0
54	Complementary Use of LC-ICP-MS and LC-ESI-Q-TOF-MS for Selenium Speciation. Analytical Sciences, 2015, 31, 561-564.	1.6	21

#	Article	IF	CITATIONS
55	Metabolism of trimethylselenonium ion in selenium accumulator, <i>Allium sativum </i> . Fundamental Toxicological Sciences, 2015, 2, 95-99.	0.6	0
56	Detoxification of Selenite to Form Selenocyanate in Mammalian Cells. Chemical Research in Toxicology, 2015, 28, 1803-1814.	3.3	35
57	Comparison of Accumulation of Four Metalloids in Allium Sativum. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 604-608.	2.7	7
58	Metabolic pathway of inorganic and organic selenocompounds labeled with stable isotope in Japanese quail. Analytical and Bioanalytical Chemistry, 2014, 406, 7959-7966.	3.7	10
59	Arsenic (+3 oxidation state) methyltransferase is a specific but replaceable factor against arsenic toxicity. Toxicology Reports, 2014, 1, 589-595.	3.3	5
60	Analysis of animal and plant selenometabolites in roots of a selenium accumulator, Brassica rapa var. peruviridis, by speciation. Metallomics, 2013, 5, 429.	2.4	18
61	1st Franco–Japanese Workshop on Metallomics, Pau, France. Metallomics, 2013, 5, 1468.	2.4	0
62	Speciation and identification of tellurium-containing metabolites in garlic, Allium sativum. Metallomics, 2013, 5, 1215.	2.4	25
63	Metallomics in Japan. Metallomics, 2013, 5, 415.	2.4	0
64	Toxicological and pharmacological analysis of selenohomolanthionine in mice. Toxicology Research, 2013, 2, 115-122.	2.1	8
65	Chromatographic Behavior of Selenoproteins in Rat Serum Detected by Inductively Coupled Plasma Mass Spectrometry. Analytical Sciences, 2013, 29, 787-792.	1.6	21
66	Cooperative Functions of ZnT1, Metallothionein and ZnT4 in the Cytoplasm Are Required for Full Activation of TNAP in the Early Secretory Pathway. PLoS ONE, 2013, 8, e77445.	2.5	34
67	New Development of Metallomics Research Based on the Speciation. Bunseki Kagaku, 2012, 61, 513-522.	0.2	1
68	Selenometabolomics Explored by Speciation. Biological and Pharmaceutical Bulletin, 2012, 35, 1863-1869.	1.4	27
69	Distribution and metabolism of selenite and selenomethionine in the Japanese quail. Metallomics, 2012, 4, 457.	2.4	13
70	Comparison in Accumulation of Lanthanide Elements Among Three Brassicaceae Plant Sprouts. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 133-137.	2.7	5
71	Generation of thioarsenicals is dependent on the enterohepatic circulation in rats. Metallomics, 2011, 3, 1064.	2.4	33
72	Speciation and identification of low molecular weight selenium compounds in the liver of sea turtles. Journal of Analytical Atomic Spectrometry, 2011, 26, 80-85.	3.0	33

#	Article	IF	CITATIONS
73	Mitochondria Are the Main Target Organelle for Trivalent Monomethylarsonous Acid (MMA ^{III})-Induced Cytotoxicity. Chemical Research in Toxicology, 2011, 24, 1094-1103.	3.3	96
74	Roles of copper chaperone for superoxide dismutase 1 and metallothionein in copper homeostasis. Metallomics, 2011, 3, 693.	2.4	25
75	Cell-specific Synergic Effect of Cimicifugoside on Cytotoxicity of Methotrexate. Journal of Health Science, 2011, 57, 350-355.	0.9	Ο
76	Research Tools and Techniques for Copper Metabolism in Mammals. Journal of Health Science, 2011, 57, 385-396.	0.9	5
77	Comparison of selenoneine found in marine organisms with selenite in the interaction with mercury compounds in vitro. Journal of Toxicological Sciences, 2011, 36, 725-731.	1.5	11
78	Distribution and metabolism of selenohomolanthionine labeled with a stable isotope. Analytical and Bioanalytical Chemistry, 2011, 399, 1765-1772.	3.7	15
79	Roles of COMM-domain-containing 1 in stability and recruitment of the copper-transporting ATPase in a mouse hepatoma cell line. Biochemical Journal, 2010, 429, 53-61.	3.7	41
80	Comparison of Selenium Metabolism in Three Brassicaceae Plants. Journal of Health Science, 2010, 56, 699-704.	0.9	12
81	Distribution and metabolism of four different dimethylated arsenicals in hamsters. Toxicology and Applied Pharmacology, 2010, 245, 67-75.	2.8	24
82	Distribution and speciation of arsenic after intravenous administration of monomethylmonothioarsonic acid in rats. Chemosphere, 2010, 81, 206-213.	8.2	20
83	Effect of glutathione depletion on removal of copper from LEC rat livers by tetrathiomolybdate. Journal of Inorganic Biochemistry, 2010, 104, 858-862.	3.5	11
84	Distinct uptake of tellurate from selenate in a selenium accumulator, Indian mustard (Brassica) Tj ETQq0 0 0 rgB	T /Overloc 2.4	k 10 Tf 50 30 12
85	Comparison of selenohomolanthionine and selenomethionine in terms of selenium distribution and toxicity in rats by bolus administration. Metallomics, 2010, 2, 412.	2.4	19
86	Systemic distribution and speciation of diphenylarsinic acid fed to rats. Toxicology and Applied Pharmacology, 2009, 237, 214-220.	2.8	13
87	Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1. Toxicology and Applied Pharmacology, 2009, 237, 205-213.	2.8	35
88	Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells. Toxicology and Applied Pharmacology, 2009, 238, 133-140.	2.8	75
89	Effects of chemical species of selenium on maternal transfer during pregnancy and lactation. Life Sciences, 2009, 84, 888-893.	4.3	24
90	Selenometabolomics: Identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry. Journal of Analytical Atomic Spectrometry, 2009, 24, 1477.	3.0	70

#	Article	IF	CITATIONS
91	Speciation of selenomethionine metabolites in wheat germ extract. Metallomics, 2009, 1, 78-86.	2.4	21
92	Editorial and Advisory Board profiles. Metallomics, 2009, 1, 17.	2.4	1
93	Selenium metabolism in rats with long-term ingestion of Se-methylselenocysteine using enriched stable isotopes. Journal of Toxicological Sciences, 2009, 34, 191-200.	1.5	21
94	Toxicometallomics for Research on the Toxicology of Exotic Metalloids Based on Speciation Studies. Analytical Sciences, 2009, 25, 1189-1195.	1.6	31
95	Metabolism of tellurium, antimony and germanium simultaneously administered to rats. Journal of Toxicological Sciences, 2009, 34, 295-303.	1.5	30
96	Comparison of distribution and metabolism between tellurium and selenium in rats. Journal of Inorganic Biochemistry, 2008, 102, 1507-1513.	3.5	32
97	In vitro translation with [34S]-labeled methionine, selenomethionine, and telluromethionine. Analytical and Bioanalytical Chemistry, 2008, 390, 45-51.	3.7	26
98	Integrated strategies for identification of selenometabolites in animal and plant samples. Analytical and Bioanalytical Chemistry, 2008, 390, 1685-1689.	3.7	25
99	Narrow-bore HPLC–ICP–MS for speciation of copper in mutant mouse neonates bearing a defect in Cu metabolism. Analytical and Bioanalytical Chemistry, 2008, 390, 1799-1803.	3.7	19
100	Speciation of selenium in selenium-enriched seeds, buckwheat (Fagopyrum esculentum Moench) and quinoa (Chenopodium quinoa Willdenow). European Food Research and Technology, 2008, 227, 1455-1460.	3.3	16
101	Enhancement of Nuclear Localization of Metallothionein by Nitric Oxide. Journal of Health Science, 2008, 54, 339-342.	0.9	4
102	Identification of selenohomolanthionine in selenium-enriched Japanese pungent radish. Journal of Analytical Atomic Spectrometry, 2007, 22, 1390.	3.0	65
103	Identification of urinary tellurium metabolite in rats administered sodium tellurite. Journal of Analytical Atomic Spectrometry, 2007, 22, 153-157.	3.0	25
104	Separation of metallothionein isoforms extracted from isoform-specific knockdown cells on two-dimensional micro high-performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry, 2007, 22, 179-182.	3.0	19
105	Protective role of metallothionein against copper depletion. Archives of Biochemistry and Biophysics, 2006, 451, 112-118.	3.0	32
106	Liquid chromatography–electrospray ionization tandem mass spectrometry for on-line characterization, monitoring and isotopic profiling of the main selenium-metabolite in human urine after consumption of Se-rich and Se-enriched food. Analytica Chimica Acta, 2006, 555, 25-33.	5.4	18
107	Liquid chromatography–mass spectrometry (LC–MS): a powerful combination for selenium speciation in garlic (Allium sativum). Analytical and Bioanalytical Chemistry, 2006, 384, 1196-1206.	3.7	77
108	Effects of deuterium in octopole reaction and collision cell ICP-MS on detection of selenium in extracellular fluids. Analytica Chimica Acta, 2005, 554, 123-129.	5.4	44

1

#	Article	IF	CITATIONS
109	Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L.) Tj ETQq1 1	0.784314 3.7	rgBT /Over 61
110	Chromatography A, 2005, 1093, 118-125. Selenosugar and trimethylselenonium among urinary Se metabolites: dose- and age-related changes. Toxicology and Applied Pharmacology, 2005, 206, 1-8.	2.8	83
111	Nuclear trafficking of metallothionein requires oxidation of a cytosolic partner. Journal of Cellular Physiology, 2005, 202, 563-569.	4.1	49
112	Speciation of selenocompounds by capillary HPLC coupled with ICP-MS using multi-mode gel filtration columns. Journal of Analytical Atomic Spectrometry, 2005, 20, 35.	3.0	22
113	Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats. Toxicology and Applied Pharmacology, 2004, 198, 336-344.	2.8	45
114	Speciation of arsenic in biological samples. Toxicology and Applied Pharmacology, 2004, 198, 307-318.	2.8	156
115	Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnology Letters, 2004, 26, 153-157.	2.2	127
116	Speciation of selenium in selenium-enriched shiitake mushroom, Lentinula edodes. Analytical and Bioanalytical Chemistry, 2004, 379, 861-866.	3.7	94
117	Dimethylthioarsenicals as Arsenic Metabolites and Their Chemical Preparations. Chemical Research in Toxicology, 2004, 17, 914-921.	3.3	101
118	Determination of Selenomethionine and Selenocysteine in Human Serum Using Speciated Isotope Dilution-Capillary HPLCâ^'Inductively Coupled Plasma Collision Cell Mass Spectrometry. Analytical Chemistry, 2004, 76, 6635-6642.	6.5	106
119	A selective requirement for copper-dependent activation of cytochrome c oxidase by Cox17p. Biochemical and Biophysical Research Communications, 2004, 324, 1379-1385.	2.1	14
120	Synchronized generation of reactive oxygen species with the cell cycle. Life Sciences, 2004, 75, 301-311.	4.3	31
121	Role of Metallothionein in the Cell Cycle: Protection against the Retardation of Cell Proliferation by Endogenous Reactive Oxygen Species. Journal of Health Science, 2004, 50, 154-158.	0.9	11
122	Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry. Toxicology and Applied Pharmacology, 2003, 189, 73-83.	2.8	164
123	Effects of soy protein isolate on LEC rats, a model of Wilson disease: mechanisms underlying enhancement of liver cell damage. Biochemical and Biophysical Research Communications, 2003, 302, 271-274.	2.1	2
124	Oxidative production of monomethylated selenium from the major urinary selenometabolite, selenosugar. Journal of Analytical Atomic Spectrometry, 2003, 18, 1252.	3.0	25
125	Soy Protein Isolate Enhances Hepatic Copper Accumulation and Cell Damage in LEC Rats. Journal of Nutrition, 2003, 133, 1250-1254.	2.9	7

Arsenic metabolism in hyperbilirubinemic rats. , 2003, , 355-367.

#	Article	IF	CITATIONS
127	Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15932-15936.	7.1	261
128	Metabolic pathway for selenium in the body: speciation by HPLC-ICP MS with enriched Se. Food Additives and Contaminants, 2002, 19, 974-983.	2.0	131
129	Speciation of arsenic in body fluids. Talanta, 2002, 58, 111-119.	5.5	96
130	Copper balance and ceruloplasmin in chronic hepatitis in a Wilson disease animal model, LEC rats. Archives of Toxicology, 2002, 76, 502-508.	4.2	18
131	Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice. Journal of Inorganic Biochemistry, 2002, 88, 173-182.	3.5	84
132	Identification of a novel selenium metabolite, Se-methyl-N-acetylselenohexosamine, in rat urine by high-performance liquid chromatography–inductively coupled plasma mass spectrometry and –electrospray ionization tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 767, 301-312.	2.3	124
133	Identification of Dimethylarsinous and Monomethylarsonous Acids in Human Urine of the Arsenic-Affected Areas in West Bengal, India. Chemical Research in Toxicology, 2001, 14, 371-378.	3.3	305
134	Glutathione-conjugated Arsenics in the Potential Hepato-enteric Circulation in Rats. Chemical Research in Toxicology, 2001, 14, 1604-1611.	3.3	94
135	Animal Species Difference in the Uptake of Dimethylarsinous Acid (DMAIII) by Red Blood Cells. Chemical Research in Toxicology, 2001, 14, 1446-1452.	3.3	77
136	Speciation and metabolism of selenium injected with 82Se-enriched selenite and selenate in rats. Biomedical Applications, 2001, 760, 73-81.	1.7	69
137	Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. FEBS Journal, 2001, 259, 635-642.	0.2	105
138	Negative Regulatory Role of Sp1 in Metal Responsive Element-mediated Transcriptional Activation. Journal of Biological Chemistry, 2001, 276, 16534-16539.	3.4	60
139	Roles of zinc fingers and other regions of the transcription factor human MTF-1 in zinc-regulated DNA binding. Journal of Cellular Physiology, 2000, 185, 464-472.	4.1	50
140	Metabolic fate of the insoluble copper/tetrathiomolybdate complex formed in the liver of LEC rats with excess tetrathiomolybdate. Journal of Inorganic Biochemistry, 2000, 78, 123-128.	3.5	24
141	Excretion of copper complexed with thiomolybdate into the bile and blood in LEC rats. Chemico-Biological Interactions, 2000, 124, 217-231.	4.0	34
142	Inhibitory Effects of Heavy Metals on Transcription Factor Sp1 Industrial Health, 2000, 38, 224-227.	1.0	14
143	Exchange of endogenous selenium for dietary selenium as 82Se-enriched selenite in brain, liver, kidneys and testes. Life Sciences, 2000, 67, 3041-3049.	4.3	18
144	Biological significance of non-acetylated metallothionein. Biomedical Applications, 1999, 735, 17-24.	1.7	18

#	Article	IF	CITATIONS
145	Comparative mechanism and toxicity of tetra- and dithiomolybdates in the removal of copper. Journal of Inorganic Biochemistry, 1999, 75, 199-204.	3.5	33
146	Identification of the zinc-binding protein specifically present in male rat liver as carbonic anhydrase III. Chemico-Biological Interactions, 1999, 122, 185-197.	4.0	9
147	Speciation of metabolites of selenate in rats by HPLC-ICP-MS. Analyst, The, 1999, 124, 1237-1241.	3.5	46
148	Incorporation of selenium into selenoprotein P and extracellular glutathione peroxidase: HPLC-ICPMS data with enriched selenite. Analyst, The, 1999, 124, 1749-1754.	3.5	36
149	Targeting of tetrathiomolybdate on the copper accumulating in the liver of LEC rats. Journal of Inorganic Biochemistry, 1998, 70, 49-55.	3.5	32
150	Effect of Cadmium on Selective Removal of Copper by Tetrathiomolybdate in the Liver of LEC Rats (Proceedings of the 23rd Symposium on Toxicology and Environmental Health). Japanese Journal of Toxicology and Environmental Health, 1998, 44, P29-P29.	0.1	0
151	Pharmacokinetics of Tetrathiomolybdate in LEC and Normal Rats (Proceedings of the 21st Symposium) Tj ETQq1 2 1996, 42, P18-P18.	1 0.78431 0.1	4 rgBT /Ove O
152	Mechanisms of selective copper removal by tetrathiomolybdate from metallothionein in LEC rats. Toxicology, 1996, 106, 75-83.	4.2	33
153	Mechanisms for Selective Removal of Copper Bound to Metallothionein by Tetrathiomolybdate (Proceedings of the 20th Symposium on Toxicology and Environmental Health). Japanese Journal of Toxicology and Environmental Health, 1995, 41, P38-P38.	0.1	0
154	Systemic Dispositions of Molybdenum and Copper after Tetrathiomolybdate Injection in LEC Rats. Journal of Trace Elements in Medicine and Biology, 1995, 9, 165-169.	3.0	18
155	Molybdenum and Copper Kinetics after Tetrathiomolybdate Injection in LEC Rats : Specific Role of Serum Albumin. Journal of Trace Elements in Medicine and Biology, 1995, 9, 170-175.	3.0	18
156	Mechanisms for removal of copper from metallothionein by tetrathiomolybdate. Journal of Inorganic Biochemistry, 1994, 54, 157-165.	3.5	21
157	Mechanisms for Accumulation of Copper in the Liver of LEC Rats and Removal by Tetrathiomolybdate (Proceedings of the 19th Symposium on Toxicology and Environmental Health). Japanese Journal of Toxicology and Environmental Health, 1994, 40, P23-P23.	0.1	0
158	Ropinirole involved in a fatal case: blood and urinary concentrations. Forensic Toxicology, 0, , 1.	2.4	2