
Dufour Ã%ic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351864/publications.pdf Version: 2024-02-01

DUECHE Ãogaric

#	Article	lF	CITATIONS
1	Monitoring of thermal changes in meat by synchronous fluorescence spectroscopy. Journal of Food Engineering, 2016, 168, 160-165.	5.2	43
2	Classification and characterization of beef muscles using front-face fluorescence spectroscopy. Meat Science, 2015, 100, 69-72.	5.5	22
3	Use of Fourier transform-infrared spectroscopy to predict spoilage bacteria on aerobically stored chicken breast fillets. LWT - Food Science and Technology, 2014, 56, 315-320.	5.2	28
4	Potential of a custom-designed fluorescence imager combined with multivariate statistics for the study of chemical and mechanical characteristics of beef meat. Food Chemistry, 2012, 131, 1030-1036.	8.2	7
5	Cheese-Matrix Characteristics During Heating and Cheese Melting Temperature Prediction by Synchronous Fluorescence and Mid-infrared Spectroscopies. Food and Bioprocess Technology, 2012, 5, 273-284.	4.7	37
6	Optical fiber-based synchronous fluorescence spectroscopy for bacterial discrimination directly from colonies on agar plates. Analytical Methods, 2011, 3, 133-143.	2.7	8
7	Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet. Food Research International, 2011, 44, 471-480.	6.2	61
8	Structural Changes of Milk Components during Acid-Induced Coagulation Kinetics as Studied by Synchronous Fluorescence and Mid-Infrared Spectroscopy. Applied Spectroscopy, 2011, 65, 284-292.	2.2	17
9	Recent advances in the analysis of dairy product quality using methods based on the interactions of light with matter. International Journal of Dairy Technology, 2011, 64, 153-165.	2.8	25
10	Potential of synchronous fluorescence spectroscopy coupled with chemometrics to determine the heterocyclic aromatic amines in grilled meat. European Food Research and Technology, 2010, 231, 803-812.	3.3	28
11	Utilisation of attenuated total reflectance MIR and front-face fluorescence spectroscopies for the identification of Saint-Nectaire cheeses varying by manufacturing conditions. European Food Research and Technology, 2010, 231, 873-882.	3.3	14
12	Relations Between Spectral and Physicochemical Properties of Cheese, Milk, and Whey Examined Using Multidimensional Analysis. Food and Bioprocess Technology, 2010, 3, 247-256.	4.7	9
13	Principles of Infrared Spectroscopy. , 2009, , 1-27.		17
14	Fluorescence Spectroscopy as a Promising Tool for a Polyphasic Approach to Pseudomonad Taxonomy. Current Microbiology, 2009, 58, 39-46.	2.2	29
15	Synchronous Frontâ€Face Fluorescence Spectroscopy Coupled with Parallel Factors (PARAFAC) Analysis to Study the Effects of Cooking Time on Meat. Journal of Food Science, 2009, 74, E534-9.	3.1	37
16	Front-face fluorescence spectroscopy as a tool to classify seven bovine muscles according to their chemical and rheological characteristics. Meat Science, 2009, 83, 672-677.	5.5	33
17	Effects of Added Minerals (Calcium, Phosphate, and Citrate) on the Molecular Structure of Skim Milk as Investigated by Mid-Infrared and Synchronous Fluorescence Spectroscopies Coupled with Chemometrics. Applied Spectroscopy, 2009, 63, 1134-1141.	2.2	15
18	A comparison and joint use of mid infrared and fluorescence spectroscopic methods for differentiating between manufacturing processes and sampling zones of ripened soft cheeses. European Food Research and Technology, 2008, 226, 861-870.	3.3	8

#	Article	IF	CITATIONS
19	Utilisation of front face fluorescence spectroscopy as a tool for the prediction of some chemical parameters and the melting point of semi-hard and hard cheeses: a preliminary study. European Food Research and Technology, 2008, 226, 1119-1126.	3.3	10
20	Front face fluorescence spectroscopy and visible spectroscopy coupled with chemometrics have the potential to characterise ripening of Cabernet Franc grapes. Analytica Chimica Acta, 2008, 621, 8-18.	5.4	34
21	Investigation of the effects of season, milking region, sterilisation process and storage conditions on milk and UHT milk physico-chemical characteristics: a multidimensional statistical approach. Dairy Science and Technology, 2008, 88, 291-312.	2.2	20
22	Development of a portable spectrofluorometer for measuring the quality of cheese. Dairy Science and Technology, 2008, 88, 477-494.	2.2	11
23	Characterization of different blue cheeses using a custom-design multispectral imager. Dairy Science and Technology, 2008, 88, 537-548.	2.2	18
24	Effects of Mild Heating and Acidification on the Molecular Structure of Milk Components as Investigated by Synchronous Front-Face Fluorescence Spectroscopy Coupled with Parallel Factor Analysis. Applied Spectroscopy, 2008, 62, 490-496.	2.2	47
25	Infrared and Fluorescence Spectroscopic Techniques for the Determination of Nutritional Constituents in Foods. International Journal of Food Properties, 2007, 10, 299-320.	3.0	31
26	Development of a monoclonal antibody-based immunoassay for specific quantification of bovine milk alkaline phosphatase. Journal of Dairy Research, 2007, 74, 290-295.	1.4	6
27	Use of Response Surface Methodology to Study the Influence of Water Content and Air Pressure on Cake Batter Quality. International Journal of Food Engineering, 2007, 3, .	1.5	0
28	Diversity of the sensory characteristics of traditional dry sausages from the centre of France: Relation with regional manufacturing practice. Food Quality and Preference, 2007, 18, 517-530.	4.6	33
29	Investigation of the physicochemical and sensory homogeneity of traditional French dry sausages. Meat Science, 2007, 75, 359-370.	5.5	16
30	Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chemistry, 2007, 101, 1305-1314.	8.2	50
31	The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland. Food Chemistry, 2007, 101, 314-323.	8.2	142
32	Utilisation of mid-infrared spectroscopy for determination of the geographic origin of Gruyère PDO and L'Etivaz PDO Swiss cheeses. Food Chemistry, 2007, 105, 847-854.	8.2	35
33	Characterisation of soft cheese by front face fluorescence spectroscopy coupled with chemometric tools: Effect of the manufacturing process and sampling zone. Food Chemistry, 2007, 100, 632-642.	8.2	51
34	Monitoring the molecular changes by front face fluorescence spectroscopy throughout ripening of a semi-hard cheese. Food Chemistry, 2007, 104, 409-420.	8.2	24
35	Prediction of colour of European Emmental cheeses by using near infrared spectroscopy: a feasibility study. European Food Research and Technology, 2007, 226, 63-69.	3.3	13
36	Interactions between Bovine β-Lactoglobulin A and Various Bioactive Peptides As Studied by Front-Face Fluorescence Spectroscopy. Journal of Agricultural and Food Chemistry, 2006, 54, 4962-4969.	5.2	12

#	Article	IF	CITATIONS
37	Front-Face Fluorescence Spectroscopy as a Rapid and Nondestructive Tool for Differentiating Various Cereal Products:Â A Preliminary Investigation. Journal of Agricultural and Food Chemistry, 2006, 54, 2027-2034.	5.2	44
38	Microbial ecology of a small-scale facility producing traditional dry sausage. Food Control, 2006, 17, 446-453.	5.5	51
39	Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 2006, 17, 462-468.	5.5	124
40	Utilisation of a rapid technique based on front-face fluorescence spectroscopy for differentiating between fresh and frozen–thawed fish fillets. Food Research International, 2006, 39, 349-355.	6.2	91
41	Prediction of the rheology parameters of ripened semi-hard cheeses using fluorescence spectra in the UV and visible ranges recorded at a young stage. International Dairy Journal, 2006, 16, 1490-1497.	3.0	25
42	Chemical characterisation of European Emmental cheeses by near infrared spectroscopy using chemometric tools. International Dairy Journal, 2006, 16, 1211-1217.	3.0	71
43	Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control, 2006, 17, 454-461.	5.5	171
44	A Comparison and Joint Use of VIS-NIR, MIR and Fluorescence Spectroscopic Methods for Differentiating Between the Manufacturing Process and Sampling Zones of Ripened Soft Cheese. , 2006, , .		0
45	Investigation of variety, typicality and vintage of French and German wines using front-face fluorescence spectroscopy. Analytica Chimica Acta, 2006, 563, 292-299.	5.4	75
46	Common components and specific weights analysis: A tool for monitoring the molecular structure of semi-hard cheese throughout ripening. Analytica Chimica Acta, 2006, 572, 125-133.	5.4	35
47	Common components and specific weights analysis: A chemometric method for dealing with complexity of food products. Chemometrics and Intelligent Laboratory Systems, 2006, 81, 41-49.	3.5	73
48	Characterisation of lady finger batters and biscuits by fluorescence spectroscopy—Relation with density, color and texture. Journal of Food Engineering, 2006, 77, 896-909.	5.2	21
49	A comparison and joint use of NIR and MIR spectroscopic methods for the determination of some parameters in European Emmental cheese. European Food Research and Technology, 2006, 223, 44-50.	3.3	50
50	Application of the MIR for the determination of some chemical parameters in European Emmental cheeses produced during summer. European Food Research and Technology, 2006, 222, 165-170.	3.3	40
51	Relations between the know-how of small-scale facilities and the sensory diversity of traditional dry sausages from the Massif Central in France. European Food Research and Technology, 2006, 222, 580-589.	3.3	14
52	A comparison and joint use of VIS-NIR and MIR spectroscopic methods for the determination of some chemical parameters in soft cheeses at external and central zones: a preliminary study. European Food Research and Technology, 2006, 223, 363-371.	3.3	20
53	Common components and specific weight analysis and multiple co-inertia analysis applied to the coupling of several measurement techniques. Journal of Chemometrics, 2006, 20, 172-183.	1.3	43
54	Mid-infrared spectrometry: A tool for the determination of chemical parameters in Emmental cheeses produced during winter. Dairy Science and Technology, 2006, 86, 83-97.	0.9	64

#	Article	IF	CITATIONS
55	Utilisation of front-face fluorescence spectroscopy for the determination of some selected chemical parameters in soft cheeses. Dairy Science and Technology, 2006, 86, 155-169.	0.9	18
56	New Spectroscopic Techniques for Online Monitoring of Meat Quality. Food Additives, 2006, , 87-129.	0.1	2
57	Phenotypic and genotypic identification of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. Food Microbiology, 2005, 22, 373-382.	4.2	67
58	Characterization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures. Food Microbiology, 2005, 22, 529-538.	4.2	85
59	Authentication of the Botanical Origin of Honey by Front-Face Fluorescence Spectroscopy. A Preliminary Study. Journal of Agricultural and Food Chemistry, 2005, 53, 1343-1347.	5.2	70
60	Front-Face Fluorescence Spectroscopy Allows the Characterization of Mild Heat Treatments Applied to Milk. Relations with the Denaturation of Milk Proteins. Journal of Agricultural and Food Chemistry, 2005, 53, 502-507.	5.2	112
61	The potential of combined infrared and fluorescence spectroscopies as a method of determination of the geographic origin of Emmental cheeses. International Dairy Journal, 2005, 15, 287-298.	3.0	105
62	Monitoring the geographic origin of both experimental French Jura hard cheeses and Swiss Gruyère and L'Etivaz PDO cheeses using mid-infrared and fluorescence spectroscopies: a preliminary investigation. International Dairy Journal, 2005, 15, 275-286.	3.0	78
63	Investigation at the molecular level of soft cheese quality and ripening by infrared and fluorescence spectroscopies and chemometrics—relationships with rheology properties. International Dairy Journal, 2005, 15, 669-678.	3.0	48
64	Potentiality of front-face fluorescence spectroscopy to determine the geographic origin of milks from the Haute-Loire department (France). Dairy Science and Technology, 2005, 85, 223-236.	0.9	58
65	Investigation of the selective bactericidal effect of several decontaminating solutions on bacterial biofilms including useful, spoilage and/or pathogenic bacteria. Food Microbiology, 2004, 21, 11-17.	4.2	28
66	Determining the geographic origin of Emmental cheeses produced during winter and summer using a technique based on the concatenation of MIR and fluorescence spectroscopic data. European Food Research and Technology, 2004, 219, 184.	3.3	69
67	Alteration of raw-milk cheese by Pseudomonas spp.: monitoring the sources of contamination using fluorescence spectroscopy and metabolic profiling. Journal of Microbiological Methods, 2004, 59, 33-41.	1.6	50
68	Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. Journal of Microbiological Methods, 2004, 59, 271-281.	1.6	48
69	A rapid method based on front-face fluorescence spectroscopy for the monitoring of the texture of meat emulsions and frankfurters. Meat Science, 2004, 67, 219-229.	5.5	57
70	Fluorescence and infrared spectroscopies: a tool for the determination of the geographic origin of Emmental cheeses manufactured during summer. Dairy Science and Technology, 2004, 84, 359-374.	0.9	45
71	Monitoring bacteria growth using their intrinsic fluorescence. Sciences Des Aliments, 2004, 24, 207-220.	0.2	8
72	Development of Intrinsic Fluorescent Multispectral Imagery Specific for Fat, Connective Tissue, and Myofibers in Meat. Journal of Food Science, 2003, 68, 1161-1168.	3.1	44

#	Article	IF	CITATIONS
73	Spectroscopic techniques coupled with chemometric tools for structure and texture determinations in dairy products. International Dairy Journal, 2003, 13, 607-620.	3.0	96
74	Dynamic testing rheology and fluorescence spectroscopy investigations of surface to centre differences in ripened soft cheeses. International Dairy Journal, 2003, 13, 973-985.	3.0	78
75	Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of fish freshness. Food Research International, 2003, 36, 415-423.	6.2	107
76	Fluorescence spectroscopy: A tool for the investigation of cheese melting - Correlation with rheological characteristics. Dairy Science and Technology, 2003, 83, 251-264.	0.9	48
77	Measure of meat tenderness using front-face fluorescence spectroscopy. Sciences Des Aliments, 2003, 23, 142-145.	0.2	17
78	Joint analysis of sensory and instrumental data applied to the investigation of the texture of Charolais meat. Sciences Des Aliments, 2003, 23, 172-176.	0.2	5
79	Monitoring the texture of meat emulsions by front-face fluorescence spectroscopy. Sciences Des Aliments, 2003, 23, 128-131.	0.2	2
80	Improvement of food quality and safety in meat traditional workshops. Sciences Des Aliments, 2003, 23, 101-103.	0.2	0
81	Chemometric methods for the coupling of spectroscopic techniques and for the extraction of the relevant information contained in the spectral data tables. Chemometrics and Intelligent Laboratory Systems, 2002, 63, 57-68.	3.5	70
82	Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiology Letters, 2002, 211, 147-153.	1.8	109
83	Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiology Letters, 2002, 211, 147-153.	1.8	2
84	Determination of lactulose and furosine in milk using front-face fluorescence spectroscopy. Dairy Science and Technology, 2002, 82, 725-735.	0.9	88
85	Delineation of the structure of soft cheeses at the molecular level by fluorescence spectroscopy—relationship with texture. International Dairy Journal, 2001, 11, 465-473.	3.0	61
86	The Composition of the Milk Fat Globule Surface Alters the Structural Characteristics of the Coagulum. Journal of Colloid and Interface Science, 2001, 233, 241-249.	9.4	44
87	Phase transition of triglycerides during semi-hard cheese ripening. International Dairy Journal, 2000, 10, 81-93.	3.0	113
88	Gelation by phase separation in a whey protein system: in-situ kinetics of aggregation. Journal of Biotechnology, 2000, 79, 231-244.	3.8	15
89	Protein Structure and Network Orientation in Edible Films Prepared by Spinning Process. Journal of Food Science, 1999, 64, 313-316.	3.1	42
90	Structural investigation of β-lactoglobulin gelation in ethanol/water solutions. International Journal of Biological Macromolecules, 1999, 26, 35-44.	7.5	41

#	Article	IF	CITATIONS
91	Monitoring the Secondary Structure of Proteins by Near-Infrared Spectroscopy. Applied Spectroscopy, 1999, 53, 226-232.	2.2	53
92	Whey proteins modify the phase transition of milk fat globule phospholipids. Dairy Science and Technology, 1999, 79, 217-228.	0.9	27
93	Multiple fluorescence labelling of proteins, lipids and whey in dairy products using confocal microscopy. Dairy Science and Technology, 1999, 79, 567-575.	0.9	26
94	Conformation of β-Lactoglobulin at an Oil/Water Interface as Determined from Proteolysis and Spectroscopic Methods. Journal of Colloid and Interface Science, 1998, 207, 264-272.	9.4	41
95	Investigation of β-Lactoglobulin Gelation in Water/Ethanol Solutions. International Dairy Journal, 1998, 8, 87-93.	3.0	27
96	Synthesis of amidrazones using an engineered papain nitrile hydratase1. FEBS Letters, 1998, 433, 78-82.	2.8	14
97	Autocatalytic Processing of Recombinant Human Procathepsin L. Journal of Biological Chemistry, 1998, 273, 4478-4484.	3.4	123
98	Potency and Selectivity of the Cathepsin L Propeptide as an Inhibitor of Cysteine Proteases. Biochemistry, 1996, 35, 8149-8157.	2.5	196
99	Proteolysis of type III collagen by collagenase and cathepsin B under high hydrostatic pressure. Meat Science, 1996, 42, 261-269.	5.5	14
100	HOW TO INCREASE ?-LACTOGLOBULIN SUSCEPTIBILITY TO PEPTIC HYDROLYSIS. Journal of Food Biochemistry, 1996, 20, 439-462.	2.9	21
101	Hydrolysis of β-lactoglobulin by thermolysin and pepsin under high hydrostatic pressure. Biopolymers, 1995, 35, 475-483.	2.4	74
102	Proteolysis of β-lactoglobulin and β-casein by pepsin in ethanolic media. International Dairy Journal, 1995, 5, 1-14.	3.0	79
103	Engineering nitrile hydratase activity into a cysteine protease by a single mutation. Biochemistry, 1995, 34, 16382-16388.	2.5	56
104	Peptide Aldehydes and Nitriles as Transition State Analog Inhibitors of Cysteine Proteases. Biochemistry, 1995, 34, 9136-9143.	2.5	63
105	Conformation changes ofÎ ² -lactoglobulin: An ATR infrared spectroscopic study of the effect ofpH and ethanol. The Protein Journal, 1994, 13, 143-149.	1.1	28
106	β-lactoglobulin binding properties during its folding changes studied by fluorescence spectroscopy. BBA - Proteins and Proteomics, 1994, 1205, 105-112.	2.1	112
107	High-pressure effects on β-lactoglobulin interactions with ligands studied by fluorescence. BBA - Proteins and Proteomics, 1994, 1206, 166-172.	2.1	110
108	Binding of Heme-CO to Bovine and Porcine β-Lactoglobulins. Archives of Biochemistry and Biophysics, 1994, 311, 258-262.	3.0	16

#	Article	IF	CITATIONS
109	Limited proteolysis of β-lactoglobulin using thermolysin. Effects of calcium on the outcome of proteolysis. International Journal of Biological Macromolecules, 1994, 16, 37-41.	7.5	12
110	Insect Sex Pheromone Binding by Bovine .betaLactoglobulin. Journal of Agricultural and Food Chemistry, 1994, 42, 695-699.	5.2	13
111	Reversible effects of medium dielectric constant on structural transformation of β-lactoglobulin and its retinol binding. Biopolymers, 1993, 33, 589-598.	2.4	61
112	Probing the fatty acid binding site of ?-lactoglobulins. The Protein Journal, 1993, 12, 443-449.	1.1	150
113	Temperature-induced folding changes of β-lactoglobulin in hydro-methanolic solutions. International Journal of Biological Macromolecules, 1993, 15, 293-297.	7.5	16
114	Acylation and alkylation of bovine .betalactoglobulin in organic solvents. Journal of Agricultural and Food Chemistry, 1992, 40, 184-190.	5.2	18
115	Solubility and reactivity of caseins and ?-lactoglobulin in protic solvents. The Protein Journal, 1992, 11, 613-621.	1.1	5
116	Binding of benzo(?)pyrene, ellipticine, and cis-parinaric acid to ?-lactoglobulin: Influence of protein modifications. The Protein Journal, 1992, 11, 645-652.	1.1	42
117	Binding of retinoids and β-carotene to β-lactoglobulin. Influence of protein modifications. BBA - Proteins and Proteomics, 1991, 1079, 316-320.	2.1	80
118	Influence of pH on the structural changes of β-lactoglobulin studied by tryptic hydrolysis. BBA - Proteins and Proteomics, 1991, 1077, 31-34.	2.1	23
119	Alcohol-induced changes of β-lactoglobulin - retinol-binding stoichiometry. Protein Engineering, Design and Selection, 1990, 4, 185-190.	2.1	75
120	Binding affinities of .betaionone and related flavor compounds to .betalactoglobulin: effects of chemical modifications. Journal of Agricultural and Food Chemistry, 1990, 38, 1691-1695.	5.2	89
121	β-Lactoglobulin binds retinol and protoporphyrin IX at two different binding sites. FEBS Letters, 1990, 277, 223-226.	2.8	102
122	Lysosomal proteinase-sensitive regions in fast and slow skeletal muscle myosins. Biochimie, 1989, 71, 625-632.	2.6	19
123	Delineation of chicken cathepsin L secondary structure; relationship between pH dependence activity and helix content. BBA - Proteins and Proteomics, 1988, 955, 58-64.	2.1	25
124	Proteolytic specificity of chicken cathepsin L on bovine β-casein. Bioscience Reports, 1988, 8, 185-191.	2.4	5
125	Sequence homologies, hydrophobic profiles and secondary structures of cathepsins B, H and L: comparison with papain and actinidin. Biochimie, 1988, 70, 1335-1342.	2.6	50
126	Action des protéinases musculaires sur les myosines rapide et lente. Relation avec la protéolyse post-mortem dans des muscles de type contractile variable. Reproduction, Nutrition, Development, 1988, 28, 839-844.	1.9	7

Dufour Éric

#	Article	IF	CITATIONS
127	Purification and amino acid sequence of chicken liver cathepsin L. Biochemistry, 1987, 26, 5689-5695.	2.5	55